| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 | /* dorghr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int dorghr_(integer *n, integer *ilo, integer *ihi, 	doublereal *a, integer *lda, doublereal *tau, doublereal *work, 	integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__, j, nb, nh, iinfo;    extern /* Subroutine */ int xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DORGHR generates a real orthogonal matrix Q which is defined as the *//*  product of IHI-ILO elementary reflectors of order N, as returned by *//*  DGEHRD: *//*  Q = H(ilo) H(ilo+1) . . . H(ihi-1). *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix Q. N >= 0. *//*  ILO     (input) INTEGER *//*  IHI     (input) INTEGER *//*          ILO and IHI must have the same values as in the previous call *//*          of DGEHRD. Q is equal to the unit matrix except in the *//*          submatrix Q(ilo+1:ihi,ilo+1:ihi). *//*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the vectors which define the elementary reflectors, *//*          as returned by DGEHRD. *//*          On exit, the N-by-N orthogonal matrix Q. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,N). *//*  TAU     (input) DOUBLE PRECISION array, dimension (N-1) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DGEHRD. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= IHI-ILO. *//*          For optimum performance LWORK >= (IHI-ILO)*NB, where NB is *//*          the optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    nh = *ihi - *ilo;    lquery = *lwork == -1;    if (*n < 0) {	*info = -1;    } else if (*ilo < 1 || *ilo > max(1,*n)) {	*info = -2;    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*lwork < max(1,nh) && ! lquery) {	*info = -8;    }    if (*info == 0) {	nb = ilaenv_(&c__1, "DORGQR", " ", &nh, &nh, &nh, &c_n1);	lwkopt = max(1,nh) * nb;	work[1] = (doublereal) lwkopt;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DORGHR", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	work[1] = 1.;	return 0;    }/*     Shift the vectors which define the elementary reflectors one *//*     column to the right, and set the first ilo and the last n-ihi *//*     rows and columns to those of the unit matrix */    i__1 = *ilo + 1;    for (j = *ihi; j >= i__1; --j) {	i__2 = j - 1;	for (i__ = 1; i__ <= i__2; ++i__) {	    a[i__ + j * a_dim1] = 0.;/* L10: */	}	i__2 = *ihi;	for (i__ = j + 1; i__ <= i__2; ++i__) {	    a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];/* L20: */	}	i__2 = *n;	for (i__ = *ihi + 1; i__ <= i__2; ++i__) {	    a[i__ + j * a_dim1] = 0.;/* L30: */	}/* L40: */    }    i__1 = *ilo;    for (j = 1; j <= i__1; ++j) {	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    a[i__ + j * a_dim1] = 0.;/* L50: */	}	a[j + j * a_dim1] = 1.;/* L60: */    }    i__1 = *n;    for (j = *ihi + 1; j <= i__1; ++j) {	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    a[i__ + j * a_dim1] = 0.;/* L70: */	}	a[j + j * a_dim1] = 1.;/* L80: */    }    if (nh > 0) {/*        Generate Q(ilo+1:ihi,ilo+1:ihi) */	dorgqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[*		ilo], &work[1], lwork, &iinfo);    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DORGHR */} /* dorghr_ */
 |