| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479 | /* dlasy2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__4 = 4;static integer c__1 = 1;static integer c__16 = 16;static integer c__0 = 0;/* Subroutine */ int dlasy2_(logical *ltranl, logical *ltranr, integer *isgn, 	integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal *	tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale, 	doublereal *x, integer *ldx, doublereal *xnorm, integer *info){    /* Initialized data */    static integer locu12[4] = { 3,4,1,2 };    static integer locl21[4] = { 2,1,4,3 };    static integer locu22[4] = { 4,3,2,1 };    static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };    static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };    /* System generated locals */    integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1, 	    x_offset;    doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;    /* Local variables */    integer i__, j, k;    doublereal x2[2], l21, u11, u12;    integer ip, jp;    doublereal u22, t16[16]	/* was [4][4] */, gam, bet, eps, sgn, tmp[4], 	    tau1, btmp[4], smin;    integer ipiv;    doublereal temp;    integer jpiv[4];    doublereal xmax;    integer ipsv, jpsv;    logical bswap;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    logical xswap;    extern doublereal dlamch_(char *);    extern integer idamax_(integer *, doublereal *, integer *);    doublereal smlnum;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in *//*         op(TL)*X + ISGN*X*op(TR) = SCALE*B, *//*  where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or *//*  -1.  op(T) = T or T', where T' denotes the transpose of T. *//*  Arguments *//*  ========= *//*  LTRANL  (input) LOGICAL *//*          On entry, LTRANL specifies the op(TL): *//*             = .FALSE., op(TL) = TL, *//*             = .TRUE., op(TL) = TL'. *//*  LTRANR  (input) LOGICAL *//*          On entry, LTRANR specifies the op(TR): *//*            = .FALSE., op(TR) = TR, *//*            = .TRUE., op(TR) = TR'. *//*  ISGN    (input) INTEGER *//*          On entry, ISGN specifies the sign of the equation *//*          as described before. ISGN may only be 1 or -1. *//*  N1      (input) INTEGER *//*          On entry, N1 specifies the order of matrix TL. *//*          N1 may only be 0, 1 or 2. *//*  N2      (input) INTEGER *//*          On entry, N2 specifies the order of matrix TR. *//*          N2 may only be 0, 1 or 2. *//*  TL      (input) DOUBLE PRECISION array, dimension (LDTL,2) *//*          On entry, TL contains an N1 by N1 matrix. *//*  LDTL    (input) INTEGER *//*          The leading dimension of the matrix TL. LDTL >= max(1,N1). *//*  TR      (input) DOUBLE PRECISION array, dimension (LDTR,2) *//*          On entry, TR contains an N2 by N2 matrix. *//*  LDTR    (input) INTEGER *//*          The leading dimension of the matrix TR. LDTR >= max(1,N2). *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,2) *//*          On entry, the N1 by N2 matrix B contains the right-hand *//*          side of the equation. *//*  LDB     (input) INTEGER *//*          The leading dimension of the matrix B. LDB >= max(1,N1). *//*  SCALE   (output) DOUBLE PRECISION *//*          On exit, SCALE contains the scale factor. SCALE is chosen *//*          less than or equal to 1 to prevent the solution overflowing. *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,2) *//*          On exit, X contains the N1 by N2 solution. *//*  LDX     (input) INTEGER *//*          The leading dimension of the matrix X. LDX >= max(1,N1). *//*  XNORM   (output) DOUBLE PRECISION *//*          On exit, XNORM is the infinity-norm of the solution. *//*  INFO    (output) INTEGER *//*          On exit, INFO is set to *//*             0: successful exit. *//*             1: TL and TR have too close eigenvalues, so TL or *//*                TR is perturbed to get a nonsingular equation. *//*          NOTE: In the interests of speed, this routine does not *//*                check the inputs for errors. *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Data statements .. */    /* Parameter adjustments */    tl_dim1 = *ldtl;    tl_offset = 1 + tl_dim1;    tl -= tl_offset;    tr_dim1 = *ldtr;    tr_offset = 1 + tr_dim1;    tr -= tr_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    /* Function Body *//*     .. *//*     .. Executable Statements .. *//*     Do not check the input parameters for errors */    *info = 0;/*     Quick return if possible */    if (*n1 == 0 || *n2 == 0) {	return 0;    }/*     Set constants to control overflow */    eps = dlamch_("P");    smlnum = dlamch_("S") / eps;    sgn = (doublereal) (*isgn);    k = *n1 + *n1 + *n2 - 2;    switch (k) {	case 1:  goto L10;	case 2:  goto L20;	case 3:  goto L30;	case 4:  goto L50;    }/*     1 by 1: TL11*X + SGN*X*TR11 = B11 */L10:    tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];    bet = abs(tau1);    if (bet <= smlnum) {	tau1 = smlnum;	bet = smlnum;	*info = 1;    }    *scale = 1.;    gam = (d__1 = b[b_dim1 + 1], abs(d__1));    if (smlnum * gam > bet) {	*scale = 1. / gam;    }    x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1;    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));    return 0;/*     1 by 2: *//*     TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12]  = [B11 B12] *//*                                       [TR21 TR22] */L20:/* Computing MAX *//* Computing MAX */    d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1]	    , abs(d__2)), d__7 = max(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 <<	     1) + 1], abs(d__3)), d__7 = max(d__7,d__8), d__8 = (d__4 = tr[	    tr_dim1 + 2], abs(d__4)), d__7 = max(d__7,d__8), d__8 = (d__5 = 	    tr[(tr_dim1 << 1) + 2], abs(d__5));    d__6 = eps * max(d__7,d__8);    smin = max(d__6,smlnum);    tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];    tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];    if (*ltranr) {	tmp[1] = sgn * tr[tr_dim1 + 2];	tmp[2] = sgn * tr[(tr_dim1 << 1) + 1];    } else {	tmp[1] = sgn * tr[(tr_dim1 << 1) + 1];	tmp[2] = sgn * tr[tr_dim1 + 2];    }    btmp[0] = b[b_dim1 + 1];    btmp[1] = b[(b_dim1 << 1) + 1];    goto L40;/*     2 by 1: *//*          op[TL11 TL12]*[X11] + ISGN* [X11]*TR11  = [B11] *//*            [TL21 TL22] [X21]         [X21]         [B21] */L30:/* Computing MAX *//* Computing MAX */    d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1]	    , abs(d__2)), d__7 = max(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 <<	     1) + 1], abs(d__3)), d__7 = max(d__7,d__8), d__8 = (d__4 = tl[	    tl_dim1 + 2], abs(d__4)), d__7 = max(d__7,d__8), d__8 = (d__5 = 	    tl[(tl_dim1 << 1) + 2], abs(d__5));    d__6 = eps * max(d__7,d__8);    smin = max(d__6,smlnum);    tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];    tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];    if (*ltranl) {	tmp[1] = tl[(tl_dim1 << 1) + 1];	tmp[2] = tl[tl_dim1 + 2];    } else {	tmp[1] = tl[tl_dim1 + 2];	tmp[2] = tl[(tl_dim1 << 1) + 1];    }    btmp[0] = b[b_dim1 + 1];    btmp[1] = b[b_dim1 + 2];L40:/*     Solve 2 by 2 system using complete pivoting. *//*     Set pivots less than SMIN to SMIN. */    ipiv = idamax_(&c__4, tmp, &c__1);    u11 = tmp[ipiv - 1];    if (abs(u11) <= smin) {	*info = 1;	u11 = smin;    }    u12 = tmp[locu12[ipiv - 1] - 1];    l21 = tmp[locl21[ipiv - 1] - 1] / u11;    u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21;    xswap = xswpiv[ipiv - 1];    bswap = bswpiv[ipiv - 1];    if (abs(u22) <= smin) {	*info = 1;	u22 = smin;    }    if (bswap) {	temp = btmp[1];	btmp[1] = btmp[0] - l21 * temp;	btmp[0] = temp;    } else {	btmp[1] -= l21 * btmp[0];    }    *scale = 1.;    if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) > 	    abs(u11)) {/* Computing MAX */	d__1 = abs(btmp[0]), d__2 = abs(btmp[1]);	*scale = .5 / max(d__1,d__2);	btmp[0] *= *scale;	btmp[1] *= *scale;    }    x2[1] = btmp[1] / u22;    x2[0] = btmp[0] / u11 - u12 / u11 * x2[1];    if (xswap) {	temp = x2[1];	x2[1] = x2[0];	x2[0] = temp;    }    x[x_dim1 + 1] = x2[0];    if (*n1 == 1) {	x[(x_dim1 << 1) + 1] = x2[1];	*xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1) 		+ 1], abs(d__2));    } else {	x[x_dim1 + 2] = x2[1];/* Computing MAX */	d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2]		, abs(d__2));	*xnorm = max(d__3,d__4);    }    return 0;/*     2 by 2: *//*     op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] *//*       [TL21 TL22] [X21 X22]        [X21 X22]   [TR21 TR22]   [B21 B22] *//*     Solve equivalent 4 by 4 system using complete pivoting. *//*     Set pivots less than SMIN to SMIN. */L50:/* Computing MAX */    d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 << 	    1) + 1], abs(d__2)), d__5 = max(d__5,d__6), d__6 = (d__3 = tr[	    tr_dim1 + 2], abs(d__3)), d__5 = max(d__5,d__6), d__6 = (d__4 = 	    tr[(tr_dim1 << 1) + 2], abs(d__4));    smin = max(d__5,d__6);/* Computing MAX */    d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = max(d__5,	    d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 = 	    max(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 =	     max(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4))	    ;    smin = max(d__5,d__6);/* Computing MAX */    d__1 = eps * smin;    smin = max(d__1,smlnum);    btmp[0] = 0.;    dcopy_(&c__16, btmp, &c__0, t16, &c__1);    t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];    t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];    t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];    t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2];    if (*ltranl) {	t16[4] = tl[tl_dim1 + 2];	t16[1] = tl[(tl_dim1 << 1) + 1];	t16[14] = tl[tl_dim1 + 2];	t16[11] = tl[(tl_dim1 << 1) + 1];    } else {	t16[4] = tl[(tl_dim1 << 1) + 1];	t16[1] = tl[tl_dim1 + 2];	t16[14] = tl[(tl_dim1 << 1) + 1];	t16[11] = tl[tl_dim1 + 2];    }    if (*ltranr) {	t16[8] = sgn * tr[(tr_dim1 << 1) + 1];	t16[13] = sgn * tr[(tr_dim1 << 1) + 1];	t16[2] = sgn * tr[tr_dim1 + 2];	t16[7] = sgn * tr[tr_dim1 + 2];    } else {	t16[8] = sgn * tr[tr_dim1 + 2];	t16[13] = sgn * tr[tr_dim1 + 2];	t16[2] = sgn * tr[(tr_dim1 << 1) + 1];	t16[7] = sgn * tr[(tr_dim1 << 1) + 1];    }    btmp[0] = b[b_dim1 + 1];    btmp[1] = b[b_dim1 + 2];    btmp[2] = b[(b_dim1 << 1) + 1];    btmp[3] = b[(b_dim1 << 1) + 2];/*     Perform elimination */    for (i__ = 1; i__ <= 3; ++i__) {	xmax = 0.;	for (ip = i__; ip <= 4; ++ip) {	    for (jp = i__; jp <= 4; ++jp) {		if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) {		    xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1));		    ipsv = ip;		    jpsv = jp;		}/* L60: */	    }/* L70: */	}	if (ipsv != i__) {	    dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4);	    temp = btmp[i__ - 1];	    btmp[i__ - 1] = btmp[ipsv - 1];	    btmp[ipsv - 1] = temp;	}	if (jpsv != i__) {	    dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4], 		    &c__1);	}	jpiv[i__ - 1] = jpsv;	if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) {	    *info = 1;	    t16[i__ + (i__ << 2) - 5] = smin;	}	for (j = i__ + 1; j <= 4; ++j) {	    t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5];	    btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1];	    for (k = i__ + 1; k <= 4; ++k) {		t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + (			k << 2) - 5];/* L80: */	    }/* L90: */	}/* L100: */    }    if (abs(t16[15]) < smin) {	t16[15] = smin;    }    *scale = 1.;    if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1])	     > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) || 	    smlnum * 8. * abs(btmp[3]) > abs(t16[15])) {/* Computing MAX */	d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = max(d__1,d__2), d__2 		= abs(btmp[2]), d__1 = max(d__1,d__2), d__2 = abs(btmp[3]);	*scale = .125 / max(d__1,d__2);	btmp[0] *= *scale;	btmp[1] *= *scale;	btmp[2] *= *scale;	btmp[3] *= *scale;    }    for (i__ = 1; i__ <= 4; ++i__) {	k = 5 - i__;	temp = 1. / t16[k + (k << 2) - 5];	tmp[k - 1] = btmp[k - 1] * temp;	for (j = k + 1; j <= 4; ++j) {	    tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1];/* L110: */	}/* L120: */    }    for (i__ = 1; i__ <= 3; ++i__) {	if (jpiv[4 - i__ - 1] != 4 - i__) {	    temp = tmp[4 - i__ - 1];	    tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1];	    tmp[jpiv[4 - i__ - 1] - 1] = temp;	}/* L130: */    }    x[x_dim1 + 1] = tmp[0];    x[x_dim1 + 2] = tmp[1];    x[(x_dim1 << 1) + 1] = tmp[2];    x[(x_dim1 << 1) + 2] = tmp[3];/* Computing MAX */    d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]);    *xnorm = max(d__1,d__2);    return 0;/*     End of DLASY2 */} /* dlasy2_ */
 |