| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 | /* dlasdq.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dlasdq_(char *uplo, integer *sqre, integer *n, integer *	ncvt, integer *nru, integer *ncc, doublereal *d__, doublereal *e, 	doublereal *vt, integer *ldvt, doublereal *u, integer *ldu, 	doublereal *c__, integer *ldc, doublereal *work, integer *info){    /* System generated locals */    integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 	    i__2;    /* Local variables */    integer i__, j;    doublereal r__, cs, sn;    integer np1, isub;    doublereal smin;    integer sqre1;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *);    integer iuplo;    extern /* Subroutine */ int dlartg_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *), xerbla_(char *, 	    integer *), dbdsqr_(char *, integer *, integer *, integer 	    *, integer *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    logical rotate;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASDQ computes the singular value decomposition (SVD) of a real *//*  (upper or lower) bidiagonal matrix with diagonal D and offdiagonal *//*  E, accumulating the transformations if desired. Letting B denote *//*  the input bidiagonal matrix, the algorithm computes orthogonal *//*  matrices Q and P such that B = Q * S * P' (P' denotes the transpose *//*  of P). The singular values S are overwritten on D. *//*  The input matrix U  is changed to U  * Q  if desired. *//*  The input matrix VT is changed to P' * VT if desired. *//*  The input matrix C  is changed to Q' * C  if desired. *//*  See "Computing  Small Singular Values of Bidiagonal Matrices With *//*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, *//*  LAPACK Working Note #3, for a detailed description of the algorithm. *//*  Arguments *//*  ========= *//*  UPLO  (input) CHARACTER*1 *//*        On entry, UPLO specifies whether the input bidiagonal matrix *//*        is upper or lower bidiagonal, and wether it is square are *//*        not. *//*           UPLO = 'U' or 'u'   B is upper bidiagonal. *//*           UPLO = 'L' or 'l'   B is lower bidiagonal. *//*  SQRE  (input) INTEGER *//*        = 0: then the input matrix is N-by-N. *//*        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and *//*             (N+1)-by-N if UPLU = 'L'. *//*        The bidiagonal matrix has *//*        N = NL + NR + 1 rows and *//*        M = N + SQRE >= N columns. *//*  N     (input) INTEGER *//*        On entry, N specifies the number of rows and columns *//*        in the matrix. N must be at least 0. *//*  NCVT  (input) INTEGER *//*        On entry, NCVT specifies the number of columns of *//*        the matrix VT. NCVT must be at least 0. *//*  NRU   (input) INTEGER *//*        On entry, NRU specifies the number of rows of *//*        the matrix U. NRU must be at least 0. *//*  NCC   (input) INTEGER *//*        On entry, NCC specifies the number of columns of *//*        the matrix C. NCC must be at least 0. *//*  D     (input/output) DOUBLE PRECISION array, dimension (N) *//*        On entry, D contains the diagonal entries of the *//*        bidiagonal matrix whose SVD is desired. On normal exit, *//*        D contains the singular values in ascending order. *//*  E     (input/output) DOUBLE PRECISION array. *//*        dimension is (N-1) if SQRE = 0 and N if SQRE = 1. *//*        On entry, the entries of E contain the offdiagonal entries *//*        of the bidiagonal matrix whose SVD is desired. On normal *//*        exit, E will contain 0. If the algorithm does not converge, *//*        D and E will contain the diagonal and superdiagonal entries *//*        of a bidiagonal matrix orthogonally equivalent to the one *//*        given as input. *//*  VT    (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) *//*        On entry, contains a matrix which on exit has been *//*        premultiplied by P', dimension N-by-NCVT if SQRE = 0 *//*        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). *//*  LDVT  (input) INTEGER *//*        On entry, LDVT specifies the leading dimension of VT as *//*        declared in the calling (sub) program. LDVT must be at *//*        least 1. If NCVT is nonzero LDVT must also be at least N. *//*  U     (input/output) DOUBLE PRECISION array, dimension (LDU, N) *//*        On entry, contains a  matrix which on exit has been *//*        postmultiplied by Q, dimension NRU-by-N if SQRE = 0 *//*        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). *//*  LDU   (input) INTEGER *//*        On entry, LDU  specifies the leading dimension of U as *//*        declared in the calling (sub) program. LDU must be at *//*        least max( 1, NRU ) . *//*  C     (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) *//*        On entry, contains an N-by-NCC matrix which on exit *//*        has been premultiplied by Q'  dimension N-by-NCC if SQRE = 0 *//*        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). *//*  LDC   (input) INTEGER *//*        On entry, LDC  specifies the leading dimension of C as *//*        declared in the calling (sub) program. LDC must be at *//*        least 1. If NCC is nonzero, LDC must also be at least N. *//*  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N) *//*        Workspace. Only referenced if one of NCVT, NRU, or NCC is *//*        nonzero, and if N is at least 2. *//*  INFO  (output) INTEGER *//*        On exit, a value of 0 indicates a successful exit. *//*        If INFO < 0, argument number -INFO is illegal. *//*        If INFO > 0, the algorithm did not converge, and INFO *//*        specifies how many superdiagonals did not converge. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    vt_dim1 = *ldvt;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    *info = 0;    iuplo = 0;    if (lsame_(uplo, "U")) {	iuplo = 1;    }    if (lsame_(uplo, "L")) {	iuplo = 2;    }    if (iuplo == 0) {	*info = -1;    } else if (*sqre < 0 || *sqre > 1) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ncvt < 0) {	*info = -4;    } else if (*nru < 0) {	*info = -5;    } else if (*ncc < 0) {	*info = -6;    } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {	*info = -10;    } else if (*ldu < max(1,*nru)) {	*info = -12;    } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {	*info = -14;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLASDQ", &i__1);	return 0;    }    if (*n == 0) {	return 0;    }/*     ROTATE is true if any singular vectors desired, false otherwise */    rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;    np1 = *n + 1;    sqre1 = *sqre;/*     If matrix non-square upper bidiagonal, rotate to be lower *//*     bidiagonal.  The rotations are on the right. */    if (iuplo == 1 && sqre1 == 1) {	i__1 = *n - 1;	for (i__ = 1; i__ <= i__1; ++i__) {	    dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);	    d__[i__] = r__;	    e[i__] = sn * d__[i__ + 1];	    d__[i__ + 1] = cs * d__[i__ + 1];	    if (rotate) {		work[i__] = cs;		work[*n + i__] = sn;	    }/* L10: */	}	dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);	d__[*n] = r__;	e[*n] = 0.;	if (rotate) {	    work[*n] = cs;	    work[*n + *n] = sn;	}	iuplo = 2;	sqre1 = 0;/*        Update singular vectors if desired. */	if (*ncvt > 0) {	    dlasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[		    vt_offset], ldvt);	}    }/*     If matrix lower bidiagonal, rotate to be upper bidiagonal *//*     by applying Givens rotations on the left. */    if (iuplo == 2) {	i__1 = *n - 1;	for (i__ = 1; i__ <= i__1; ++i__) {	    dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);	    d__[i__] = r__;	    e[i__] = sn * d__[i__ + 1];	    d__[i__ + 1] = cs * d__[i__ + 1];	    if (rotate) {		work[i__] = cs;		work[*n + i__] = sn;	    }/* L20: */	}/*        If matrix (N+1)-by-N lower bidiagonal, one additional *//*        rotation is needed. */	if (sqre1 == 1) {	    dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);	    d__[*n] = r__;	    if (rotate) {		work[*n] = cs;		work[*n + *n] = sn;	    }	}/*        Update singular vectors if desired. */	if (*nru > 0) {	    if (sqre1 == 0) {		dlasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[			u_offset], ldu);	    } else {		dlasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[			u_offset], ldu);	    }	}	if (*ncc > 0) {	    if (sqre1 == 0) {		dlasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[			c_offset], ldc);	    } else {		dlasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[			c_offset], ldc);	    }	}    }/*     Call DBDSQR to compute the SVD of the reduced real *//*     N-by-N upper bidiagonal matrix. */    dbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[	    u_offset], ldu, &c__[c_offset], ldc, &work[1], info);/*     Sort the singular values into ascending order (insertion sort on *//*     singular values, but only one transposition per singular vector) */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {/*        Scan for smallest D(I). */	isub = i__;	smin = d__[i__];	i__2 = *n;	for (j = i__ + 1; j <= i__2; ++j) {	    if (d__[j] < smin) {		isub = j;		smin = d__[j];	    }/* L30: */	}	if (isub != i__) {/*           Swap singular values and vectors. */	    d__[isub] = d__[i__];	    d__[i__] = smin;	    if (*ncvt > 0) {		dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1], 			ldvt);	    }	    if (*nru > 0) {		dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1], &c__1);	    }	    if (*ncc > 0) {		dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)			;	    }	}/* L40: */    }    return 0;/*     End of DLASDQ */} /* dlasdq_ */
 |