| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 | /* dlasd8.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__0 = 0;static doublereal c_b8 = 1.;/* Subroutine */ int dlasd8_(integer *icompq, integer *k, doublereal *d__, 	doublereal *z__, doublereal *vf, doublereal *vl, doublereal *difl, 	doublereal *difr, integer *lddifr, doublereal *dsigma, doublereal *	work, integer *info){    /* System generated locals */    integer difr_dim1, difr_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    integer i__, j;    doublereal dj, rho;    integer iwk1, iwk2, iwk3;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal temp;    extern doublereal dnrm2_(integer *, doublereal *, integer *);    integer iwk2i, iwk3i;    doublereal diflj, difrj, dsigj;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal dlamc3_(doublereal *, doublereal *);    extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, integer *), dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), dlaset_(char *, integer *, integer 	    *, doublereal *, doublereal *, doublereal *, integer *), 	    xerbla_(char *, integer *);    doublereal dsigjp;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     October 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASD8 finds the square roots of the roots of the secular equation, *//*  as defined by the values in DSIGMA and Z. It makes the appropriate *//*  calls to DLASD4, and stores, for each  element in D, the distance *//*  to its two nearest poles (elements in DSIGMA). It also updates *//*  the arrays VF and VL, the first and last components of all the *//*  right singular vectors of the original bidiagonal matrix. *//*  DLASD8 is called from DLASD6. *//*  Arguments *//*  ========= *//*  ICOMPQ  (input) INTEGER *//*          Specifies whether singular vectors are to be computed in *//*          factored form in the calling routine: *//*          = 0: Compute singular values only. *//*          = 1: Compute singular vectors in factored form as well. *//*  K       (input) INTEGER *//*          The number of terms in the rational function to be solved *//*          by DLASD4.  K >= 1. *//*  D       (output) DOUBLE PRECISION array, dimension ( K ) *//*          On output, D contains the updated singular values. *//*  Z       (input/output) DOUBLE PRECISION array, dimension ( K ) *//*          On entry, the first K elements of this array contain the *//*          components of the deflation-adjusted updating row vector. *//*          On exit, Z is updated. *//*  VF      (input/output) DOUBLE PRECISION array, dimension ( K ) *//*          On entry, VF contains  information passed through DBEDE8. *//*          On exit, VF contains the first K components of the first *//*          components of all right singular vectors of the bidiagonal *//*          matrix. *//*  VL      (input/output) DOUBLE PRECISION array, dimension ( K ) *//*          On entry, VL contains  information passed through DBEDE8. *//*          On exit, VL contains the first K components of the last *//*          components of all right singular vectors of the bidiagonal *//*          matrix. *//*  DIFL    (output) DOUBLE PRECISION array, dimension ( K ) *//*          On exit, DIFL(I) = D(I) - DSIGMA(I). *//*  DIFR    (output) DOUBLE PRECISION array, *//*                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and *//*                   dimension ( K ) if ICOMPQ = 0. *//*          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not *//*          defined and will not be referenced. *//*          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the *//*          normalizing factors for the right singular vector matrix. *//*  LDDIFR  (input) INTEGER *//*          The leading dimension of DIFR, must be at least K. *//*  DSIGMA  (input/output) DOUBLE PRECISION array, dimension ( K ) *//*          On entry, the first K elements of this array contain the old *//*          roots of the deflated updating problem.  These are the poles *//*          of the secular equation. *//*          On exit, the elements of DSIGMA may be very slightly altered *//*          in value. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension at least 3 * K *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an singular value did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --z__;    --vf;    --vl;    --difl;    difr_dim1 = *lddifr;    difr_offset = 1 + difr_dim1;    difr -= difr_offset;    --dsigma;    --work;    /* Function Body */    *info = 0;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*k < 1) {	*info = -2;    } else if (*lddifr < *k) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLASD8", &i__1);	return 0;    }/*     Quick return if possible */    if (*k == 1) {	d__[1] = abs(z__[1]);	difl[1] = d__[1];	if (*icompq == 1) {	    difl[2] = 1.;	    difr[(difr_dim1 << 1) + 1] = 1.;	}	return 0;    }/*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can *//*     be computed with high relative accuracy (barring over/underflow). *//*     This is a problem on machines without a guard digit in *//*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). *//*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), *//*     which on any of these machines zeros out the bottommost *//*     bit of DSIGMA(I) if it is 1; this makes the subsequent *//*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation *//*     occurs. On binary machines with a guard digit (almost all *//*     machines) it does not change DSIGMA(I) at all. On hexadecimal *//*     and decimal machines with a guard digit, it slightly *//*     changes the bottommost bits of DSIGMA(I). It does not account *//*     for hexadecimal or decimal machines without guard digits *//*     (we know of none). We use a subroutine call to compute *//*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating *//*     this code. */    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];/* L10: */    }/*     Book keeping. */    iwk1 = 1;    iwk2 = iwk1 + *k;    iwk3 = iwk2 + *k;    iwk2i = iwk2 - 1;    iwk3i = iwk3 - 1;/*     Normalize Z. */    rho = dnrm2_(k, &z__[1], &c__1);    dlascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);    rho *= rho;/*     Initialize WORK(IWK3). */    dlaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);/*     Compute the updated singular values, the arrays DIFL, DIFR, *//*     and the updated Z. */    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	dlasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[		iwk2], info);/*        If the root finder fails, the computation is terminated. */	if (*info != 0) {	    return 0;	}	work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];	difl[j] = -work[j];	difr[j + difr_dim1] = -work[j + 1];	i__2 = j - 1;	for (i__ = 1; i__ <= i__2; ++i__) {	    work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 		    i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[		    j]);/* L20: */	}	i__2 = *k;	for (i__ = j + 1; i__ <= i__2; ++i__) {	    work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + 		    i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[		    j]);/* L30: */	}/* L40: */    }/*     Compute updated Z. */    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	d__2 = sqrt((d__1 = work[iwk3i + i__], abs(d__1)));	z__[i__] = d_sign(&d__2, &z__[i__]);/* L50: */    }/*     Update VF and VL. */    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	diflj = difl[j];	dj = d__[j];	dsigj = -dsigma[j];	if (j < *k) {	    difrj = -difr[j + difr_dim1];	    dsigjp = -dsigma[j + 1];	}	work[j] = -z__[j] / diflj / (dsigma[j] + dj);	i__2 = j - 1;	for (i__ = 1; i__ <= i__2; ++i__) {	    work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigj) - diflj) / (		    dsigma[i__] + dj);/* L60: */	}	i__2 = *k;	for (i__ = j + 1; i__ <= i__2; ++i__) {	    work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigjp) + difrj) / 		    (dsigma[i__] + dj);/* L70: */	}	temp = dnrm2_(k, &work[1], &c__1);	work[iwk2i + j] = ddot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;	work[iwk3i + j] = ddot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;	if (*icompq == 1) {	    difr[j + (difr_dim1 << 1)] = temp;	}/* L80: */    }    dcopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);    dcopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);    return 0;/*     End of DLASD8 */} /* dlasd8_ */
 |