| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519 | /* dlasd7.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dlasd7_(integer *icompq, integer *nl, integer *nr, 	integer *sqre, integer *k, doublereal *d__, doublereal *z__, 	doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl, 	doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *	dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm, 	integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum, 	 integer *ldgnum, doublereal *c__, doublereal *s, integer *info){    /* System generated locals */    integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;    doublereal d__1, d__2;    /* Local variables */    integer i__, j, m, n, k2;    doublereal z1;    integer jp;    doublereal eps, tau, tol;    integer nlp1, nlp2, idxi, idxj;    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer idxjp;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer jprev;    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 	    integer *, integer *, integer *), xerbla_(char *, integer *);    doublereal hlftol;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASD7 merges the two sets of singular values together into a single *//*  sorted set. Then it tries to deflate the size of the problem. There *//*  are two ways in which deflation can occur:  when two or more singular *//*  values are close together or if there is a tiny entry in the Z *//*  vector. For each such occurrence the order of the related *//*  secular equation problem is reduced by one. *//*  DLASD7 is called from DLASD6. *//*  Arguments *//*  ========= *//*  ICOMPQ  (input) INTEGER *//*          Specifies whether singular vectors are to be computed *//*          in compact form, as follows: *//*          = 0: Compute singular values only. *//*          = 1: Compute singular vectors of upper *//*               bidiagonal matrix in compact form. *//*  NL     (input) INTEGER *//*         The row dimension of the upper block. NL >= 1. *//*  NR     (input) INTEGER *//*         The row dimension of the lower block. NR >= 1. *//*  SQRE   (input) INTEGER *//*         = 0: the lower block is an NR-by-NR square matrix. *//*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *//*         The bidiagonal matrix has *//*         N = NL + NR + 1 rows and *//*         M = N + SQRE >= N columns. *//*  K      (output) INTEGER *//*         Contains the dimension of the non-deflated matrix, this is *//*         the order of the related secular equation. 1 <= K <=N. *//*  D      (input/output) DOUBLE PRECISION array, dimension ( N ) *//*         On entry D contains the singular values of the two submatrices *//*         to be combined. On exit D contains the trailing (N-K) updated *//*         singular values (those which were deflated) sorted into *//*         increasing order. *//*  Z      (output) DOUBLE PRECISION array, dimension ( M ) *//*         On exit Z contains the updating row vector in the secular *//*         equation. *//*  ZW     (workspace) DOUBLE PRECISION array, dimension ( M ) *//*         Workspace for Z. *//*  VF     (input/output) DOUBLE PRECISION array, dimension ( M ) *//*         On entry, VF(1:NL+1) contains the first components of all *//*         right singular vectors of the upper block; and VF(NL+2:M) *//*         contains the first components of all right singular vectors *//*         of the lower block. On exit, VF contains the first components *//*         of all right singular vectors of the bidiagonal matrix. *//*  VFW    (workspace) DOUBLE PRECISION array, dimension ( M ) *//*         Workspace for VF. *//*  VL     (input/output) DOUBLE PRECISION array, dimension ( M ) *//*         On entry, VL(1:NL+1) contains the  last components of all *//*         right singular vectors of the upper block; and VL(NL+2:M) *//*         contains the last components of all right singular vectors *//*         of the lower block. On exit, VL contains the last components *//*         of all right singular vectors of the bidiagonal matrix. *//*  VLW    (workspace) DOUBLE PRECISION array, dimension ( M ) *//*         Workspace for VL. *//*  ALPHA  (input) DOUBLE PRECISION *//*         Contains the diagonal element associated with the added row. *//*  BETA   (input) DOUBLE PRECISION *//*         Contains the off-diagonal element associated with the added *//*         row. *//*  DSIGMA (output) DOUBLE PRECISION array, dimension ( N ) *//*         Contains a copy of the diagonal elements (K-1 singular values *//*         and one zero) in the secular equation. *//*  IDX    (workspace) INTEGER array, dimension ( N ) *//*         This will contain the permutation used to sort the contents of *//*         D into ascending order. *//*  IDXP   (workspace) INTEGER array, dimension ( N ) *//*         This will contain the permutation used to place deflated *//*         values of D at the end of the array. On output IDXP(2:K) *//*         points to the nondeflated D-values and IDXP(K+1:N) *//*         points to the deflated singular values. *//*  IDXQ   (input) INTEGER array, dimension ( N ) *//*         This contains the permutation which separately sorts the two *//*         sub-problems in D into ascending order.  Note that entries in *//*         the first half of this permutation must first be moved one *//*         position backward; and entries in the second half *//*         must first have NL+1 added to their values. *//*  PERM   (output) INTEGER array, dimension ( N ) *//*         The permutations (from deflation and sorting) to be applied *//*         to each singular block. Not referenced if ICOMPQ = 0. *//*  GIVPTR (output) INTEGER *//*         The number of Givens rotations which took place in this *//*         subproblem. Not referenced if ICOMPQ = 0. *//*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) *//*         Each pair of numbers indicates a pair of columns to take place *//*         in a Givens rotation. Not referenced if ICOMPQ = 0. *//*  LDGCOL (input) INTEGER *//*         The leading dimension of GIVCOL, must be at least N. *//*  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) *//*         Each number indicates the C or S value to be used in the *//*         corresponding Givens rotation. Not referenced if ICOMPQ = 0. *//*  LDGNUM (input) INTEGER *//*         The leading dimension of GIVNUM, must be at least N. *//*  C      (output) DOUBLE PRECISION *//*         C contains garbage if SQRE =0 and the C-value of a Givens *//*         rotation related to the right null space if SQRE = 1. *//*  S      (output) DOUBLE PRECISION *//*         S contains garbage if SQRE =0 and the S-value of a Givens *//*         rotation related to the right null space if SQRE = 1. *//*  INFO   (output) INTEGER *//*         = 0:  successful exit. *//*         < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --z__;    --zw;    --vf;    --vfw;    --vl;    --vlw;    --dsigma;    --idx;    --idxp;    --idxq;    --perm;    givcol_dim1 = *ldgcol;    givcol_offset = 1 + givcol_dim1;    givcol -= givcol_offset;    givnum_dim1 = *ldgnum;    givnum_offset = 1 + givnum_dim1;    givnum -= givnum_offset;    /* Function Body */    *info = 0;    n = *nl + *nr + 1;    m = n + *sqre;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*nl < 1) {	*info = -2;    } else if (*nr < 1) {	*info = -3;    } else if (*sqre < 0 || *sqre > 1) {	*info = -4;    } else if (*ldgcol < n) {	*info = -22;    } else if (*ldgnum < n) {	*info = -24;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLASD7", &i__1);	return 0;    }    nlp1 = *nl + 1;    nlp2 = *nl + 2;    if (*icompq == 1) {	*givptr = 0;    }/*     Generate the first part of the vector Z and move the singular *//*     values in the first part of D one position backward. */    z1 = *alpha * vl[nlp1];    vl[nlp1] = 0.;    tau = vf[nlp1];    for (i__ = *nl; i__ >= 1; --i__) {	z__[i__ + 1] = *alpha * vl[i__];	vl[i__] = 0.;	vf[i__ + 1] = vf[i__];	d__[i__ + 1] = d__[i__];	idxq[i__ + 1] = idxq[i__] + 1;/* L10: */    }    vf[1] = tau;/*     Generate the second part of the vector Z. */    i__1 = m;    for (i__ = nlp2; i__ <= i__1; ++i__) {	z__[i__] = *beta * vf[i__];	vf[i__] = 0.;/* L20: */    }/*     Sort the singular values into increasing order */    i__1 = n;    for (i__ = nlp2; i__ <= i__1; ++i__) {	idxq[i__] += nlp1;/* L30: */    }/*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */    i__1 = n;    for (i__ = 2; i__ <= i__1; ++i__) {	dsigma[i__] = d__[idxq[i__]];	zw[i__] = z__[idxq[i__]];	vfw[i__] = vf[idxq[i__]];	vlw[i__] = vl[idxq[i__]];/* L40: */    }    dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);    i__1 = n;    for (i__ = 2; i__ <= i__1; ++i__) {	idxi = idx[i__] + 1;	d__[i__] = dsigma[idxi];	z__[i__] = zw[idxi];	vf[i__] = vfw[idxi];	vl[i__] = vlw[idxi];/* L50: */    }/*     Calculate the allowable deflation tolerence */    eps = dlamch_("Epsilon");/* Computing MAX */    d__1 = abs(*alpha), d__2 = abs(*beta);    tol = max(d__1,d__2);/* Computing MAX */    d__2 = (d__1 = d__[n], abs(d__1));    tol = eps * 64. * max(d__2,tol);/*     There are 2 kinds of deflation -- first a value in the z-vector *//*     is small, second two (or more) singular values are very close *//*     together (their difference is small). *//*     If the value in the z-vector is small, we simply permute the *//*     array so that the corresponding singular value is moved to the *//*     end. *//*     If two values in the D-vector are close, we perform a two-sided *//*     rotation designed to make one of the corresponding z-vector *//*     entries zero, and then permute the array so that the deflated *//*     singular value is moved to the end. *//*     If there are multiple singular values then the problem deflates. *//*     Here the number of equal singular values are found.  As each equal *//*     singular value is found, an elementary reflector is computed to *//*     rotate the corresponding singular subspace so that the *//*     corresponding components of Z are zero in this new basis. */    *k = 1;    k2 = n + 1;    i__1 = n;    for (j = 2; j <= i__1; ++j) {	if ((d__1 = z__[j], abs(d__1)) <= tol) {/*           Deflate due to small z component. */	    --k2;	    idxp[k2] = j;	    if (j == n) {		goto L100;	    }	} else {	    jprev = j;	    goto L70;	}/* L60: */    }L70:    j = jprev;L80:    ++j;    if (j > n) {	goto L90;    }    if ((d__1 = z__[j], abs(d__1)) <= tol) {/*        Deflate due to small z component. */	--k2;	idxp[k2] = j;    } else {/*        Check if singular values are close enough to allow deflation. */	if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {/*           Deflation is possible. */	    *s = z__[jprev];	    *c__ = z__[j];/*           Find sqrt(a**2+b**2) without overflow or *//*           destructive underflow. */	    tau = dlapy2_(c__, s);	    z__[j] = tau;	    z__[jprev] = 0.;	    *c__ /= tau;	    *s = -(*s) / tau;/*           Record the appropriate Givens rotation */	    if (*icompq == 1) {		++(*givptr);		idxjp = idxq[idx[jprev] + 1];		idxj = idxq[idx[j] + 1];		if (idxjp <= nlp1) {		    --idxjp;		}		if (idxj <= nlp1) {		    --idxj;		}		givcol[*givptr + (givcol_dim1 << 1)] = idxjp;		givcol[*givptr + givcol_dim1] = idxj;		givnum[*givptr + (givnum_dim1 << 1)] = *c__;		givnum[*givptr + givnum_dim1] = *s;	    }	    drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);	    drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);	    --k2;	    idxp[k2] = jprev;	    jprev = j;	} else {	    ++(*k);	    zw[*k] = z__[jprev];	    dsigma[*k] = d__[jprev];	    idxp[*k] = jprev;	    jprev = j;	}    }    goto L80;L90:/*     Record the last singular value. */    ++(*k);    zw[*k] = z__[jprev];    dsigma[*k] = d__[jprev];    idxp[*k] = jprev;L100:/*     Sort the singular values into DSIGMA. The singular values which *//*     were not deflated go into the first K slots of DSIGMA, except *//*     that DSIGMA(1) is treated separately. */    i__1 = n;    for (j = 2; j <= i__1; ++j) {	jp = idxp[j];	dsigma[j] = d__[jp];	vfw[j] = vf[jp];	vlw[j] = vl[jp];/* L110: */    }    if (*icompq == 1) {	i__1 = n;	for (j = 2; j <= i__1; ++j) {	    jp = idxp[j];	    perm[j] = idxq[idx[jp] + 1];	    if (perm[j] <= nlp1) {		--perm[j];	    }/* L120: */	}    }/*     The deflated singular values go back into the last N - K slots of *//*     D. */    i__1 = n - *k;    dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);/*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and *//*     VL(M). */    dsigma[1] = 0.;    hlftol = tol / 2.;    if (abs(dsigma[2]) <= hlftol) {	dsigma[2] = hlftol;    }    if (m > n) {	z__[1] = dlapy2_(&z1, &z__[m]);	if (z__[1] <= tol) {	    *c__ = 1.;	    *s = 0.;	    z__[1] = tol;	} else {	    *c__ = z1 / z__[1];	    *s = -z__[m] / z__[1];	}	drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);	drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);    } else {	if (abs(z1) <= tol) {	    z__[1] = tol;	} else {	    z__[1] = z1;	}    }/*     Restore Z, VF, and VL. */    i__1 = *k - 1;    dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);    i__1 = n - 1;    dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);    i__1 = n - 1;    dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);    return 0;/*     End of DLASD7 */} /* dlasd7_ */
 |