| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 | /* dlarzb.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b13 = 1.;static doublereal c_b23 = -1.;/* Subroutine */ int dlarzb_(char *side, char *trans, char *direct, char *	storev, integer *m, integer *n, integer *k, integer *l, doublereal *v, 	 integer *ldv, doublereal *t, integer *ldt, doublereal *c__, integer *	ldc, doublereal *work, integer *ldwork){    /* System generated locals */    integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, 	    work_offset, i__1, i__2;    /* Local variables */    integer i__, j, info;    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dtrmm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), xerbla_(	    char *, integer *);    char transt[1];/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLARZB applies a real block reflector H or its transpose H**T to *//*  a real distributed M-by-N  C from the left or the right. *//*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': apply H or H' from the Left *//*          = 'R': apply H or H' from the Right *//*  TRANS   (input) CHARACTER*1 *//*          = 'N': apply H (No transpose) *//*          = 'C': apply H' (Transpose) *//*  DIRECT  (input) CHARACTER*1 *//*          Indicates how H is formed from a product of elementary *//*          reflectors *//*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) *//*          = 'B': H = H(k) . . . H(2) H(1) (Backward) *//*  STOREV  (input) CHARACTER*1 *//*          Indicates how the vectors which define the elementary *//*          reflectors are stored: *//*          = 'C': Columnwise                        (not supported yet) *//*          = 'R': Rowwise *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. *//*  K       (input) INTEGER *//*          The order of the matrix T (= the number of elementary *//*          reflectors whose product defines the block reflector). *//*  L       (input) INTEGER *//*          The number of columns of the matrix V containing the *//*          meaningful part of the Householder reflectors. *//*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. *//*  V       (input) DOUBLE PRECISION array, dimension (LDV,NV). *//*          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L. *//*  LDV     (input) INTEGER *//*          The leading dimension of the array V. *//*          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K. *//*  T       (input) DOUBLE PRECISION array, dimension (LDT,K) *//*          The triangular K-by-K matrix T in the representation of the *//*          block reflector. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T. LDT >= K. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) *//*          On entry, the M-by-N matrix C. *//*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1,M). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,K) *//*  LDWORK  (input) INTEGER *//*          The leading dimension of the array WORK. *//*          If SIDE = 'L', LDWORK >= max(1,N); *//*          if SIDE = 'R', LDWORK >= max(1,M). *//*  Further Details *//*  =============== *//*  Based on contributions by *//*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    v_dim1 = *ldv;    v_offset = 1 + v_dim1;    v -= v_offset;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    work_dim1 = *ldwork;    work_offset = 1 + work_dim1;    work -= work_offset;    /* Function Body */    if (*m <= 0 || *n <= 0) {	return 0;    }/*     Check for currently supported options */    info = 0;    if (! lsame_(direct, "B")) {	info = -3;    } else if (! lsame_(storev, "R")) {	info = -4;    }    if (info != 0) {	i__1 = -info;	xerbla_("DLARZB", &i__1);	return 0;    }    if (lsame_(trans, "N")) {	*(unsigned char *)transt = 'T';    } else {	*(unsigned char *)transt = 'N';    }    if (lsame_(side, "L")) {/*        Form  H * C  or  H' * C *//*        W( 1:n, 1:k ) = C( 1:k, 1:n )' */	i__1 = *k;	for (j = 1; j <= i__1; ++j) {	    dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1);/* L10: */	}/*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ... *//*                        C( m-l+1:m, 1:n )' * V( 1:k, 1:l )' */	if (*l > 0) {	    dgemm_("Transpose", "Transpose", n, k, l, &c_b13, &c__[*m - *l + 		    1 + c_dim1], ldc, &v[v_offset], ldv, &c_b13, &work[		    work_offset], ldwork);	}/*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T'  or  W( 1:m, 1:k ) * T */	dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b13, &t[		t_offset], ldt, &work[work_offset], ldwork);/*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )' */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = *k;	    for (i__ = 1; i__ <= i__2; ++i__) {		c__[i__ + j * c_dim1] -= work[j + i__ * work_dim1];/* L20: */	    }/* L30: */	}/*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... *//*                            V( 1:k, 1:l )' * W( 1:n, 1:k )' */	if (*l > 0) {	    dgemm_("Transpose", "Transpose", l, n, k, &c_b23, &v[v_offset], 		    ldv, &work[work_offset], ldwork, &c_b13, &c__[*m - *l + 1 		    + c_dim1], ldc);	}    } else if (lsame_(side, "R")) {/*        Form  C * H  or  C * H' *//*        W( 1:m, 1:k ) = C( 1:m, 1:k ) */	i__1 = *k;	for (j = 1; j <= i__1; ++j) {	    dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &		    c__1);/* L40: */	}/*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ... *//*                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )' */	if (*l > 0) {	    dgemm_("No transpose", "Transpose", m, k, l, &c_b13, &c__[(*n - *		    l + 1) * c_dim1 + 1], ldc, &v[v_offset], ldv, &c_b13, &		    work[work_offset], ldwork);	}/*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T' */	dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b13, &t[t_offset], ldt, &work[work_offset], ldwork);/*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k ) */	i__1 = *k;	for (j = 1; j <= i__1; ++j) {	    i__2 = *m;	    for (i__ = 1; i__ <= i__2; ++i__) {		c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];/* L50: */	    }/* L60: */	}/*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... *//*                            W( 1:m, 1:k ) * V( 1:k, 1:l ) */	if (*l > 0) {	    dgemm_("No transpose", "No transpose", m, l, k, &c_b23, &work[		    work_offset], ldwork, &v[v_offset], ldv, &c_b13, &c__[(*n 		    - *l + 1) * c_dim1 + 1], ldc);	}    }    return 0;/*     End of DLARZB */} /* dlarzb_ */
 |