| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 | /* dlarz.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b5 = 1.;/* Subroutine */ int dlarz_(char *side, integer *m, integer *n, integer *l, 	doublereal *v, integer *incv, doublereal *tau, doublereal *c__, 	integer *ldc, doublereal *work){    /* System generated locals */    integer c_dim1, c_offset;    doublereal d__1;    /* Local variables */    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *), daxpy_(integer 	    *, doublereal *, doublereal *, integer *, doublereal *, integer *)	    ;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLARZ applies a real elementary reflector H to a real M-by-N *//*  matrix C, from either the left or the right. H is represented in the *//*  form *//*        H = I - tau * v * v' *//*  where tau is a real scalar and v is a real vector. *//*  If tau = 0, then H is taken to be the unit matrix. *//*  H is a product of k elementary reflectors as returned by DTZRZF. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': form  H * C *//*          = 'R': form  C * H *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. *//*  L       (input) INTEGER *//*          The number of entries of the vector V containing *//*          the meaningful part of the Householder vectors. *//*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. *//*  V       (input) DOUBLE PRECISION array, dimension (1+(L-1)*abs(INCV)) *//*          The vector v in the representation of H as returned by *//*          DTZRZF. V is not used if TAU = 0. *//*  INCV    (input) INTEGER *//*          The increment between elements of v. INCV <> 0. *//*  TAU     (input) DOUBLE PRECISION *//*          The value tau in the representation of H. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) *//*          On entry, the M-by-N matrix C. *//*          On exit, C is overwritten by the matrix H * C if SIDE = 'L', *//*          or C * H if SIDE = 'R'. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1,M). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension *//*                         (N) if SIDE = 'L' *//*                      or (M) if SIDE = 'R' *//*  Further Details *//*  =============== *//*  Based on contributions by *//*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --v;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    if (lsame_(side, "L")) {/*        Form  H * C */	if (*tau != 0.) {/*           w( 1:n ) = C( 1, 1:n ) */	    dcopy_(n, &c__[c_offset], ldc, &work[1], &c__1);/*           w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l ) */	    dgemv_("Transpose", l, n, &c_b5, &c__[*m - *l + 1 + c_dim1], ldc, 		    &v[1], incv, &c_b5, &work[1], &c__1);/*           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n ) */	    d__1 = -(*tau);	    daxpy_(n, &d__1, &work[1], &c__1, &c__[c_offset], ldc);/*           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... *//*                               tau * v( 1:l ) * w( 1:n )' */	    d__1 = -(*tau);	    dger_(l, n, &d__1, &v[1], incv, &work[1], &c__1, &c__[*m - *l + 1 		    + c_dim1], ldc);	}    } else {/*        Form  C * H */	if (*tau != 0.) {/*           w( 1:m ) = C( 1:m, 1 ) */	    dcopy_(m, &c__[c_offset], &c__1, &work[1], &c__1);/*           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l ) */	    dgemv_("No transpose", m, l, &c_b5, &c__[(*n - *l + 1) * c_dim1 + 		    1], ldc, &v[1], incv, &c_b5, &work[1], &c__1);/*           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m ) */	    d__1 = -(*tau);	    daxpy_(m, &d__1, &work[1], &c__1, &c__[c_offset], &c__1);/*           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... *//*                               tau * w( 1:m ) * v( 1:l )' */	    d__1 = -(*tau);	    dger_(m, l, &d__1, &work[1], &c__1, &v[1], incv, &c__[(*n - *l + 		    1) * c_dim1 + 1], ldc);	}    }    return 0;/*     End of DLARZ */} /* dlarz_ */
 |