| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 | /* dlaqgb.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dlaqgb_(integer *m, integer *n, integer *kl, integer *ku, 	 doublereal *ab, integer *ldab, doublereal *r__, doublereal *c__, 	doublereal *rowcnd, doublereal *colcnd, doublereal *amax, char *equed){    /* System generated locals */    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;    /* Local variables */    integer i__, j;    doublereal cj, large, small;    extern doublereal dlamch_(char *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAQGB equilibrates a general M by N band matrix A with KL *//*  subdiagonals and KU superdiagonals using the row and scaling factors *//*  in the vectors R and C. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  KL      (input) INTEGER *//*          The number of subdiagonals within the band of A.  KL >= 0. *//*  KU      (input) INTEGER *//*          The number of superdiagonals within the band of A.  KU >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the matrix A in band storage, in rows 1 to KL+KU+1. *//*          The j-th column of A is stored in the j-th column of the *//*          array AB as follows: *//*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) *//*          On exit, the equilibrated matrix, in the same storage format *//*          as A.  See EQUED for the form of the equilibrated matrix. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDA >= KL+KU+1. *//*  R       (input) DOUBLE PRECISION array, dimension (M) *//*          The row scale factors for A. *//*  C       (input) DOUBLE PRECISION array, dimension (N) *//*          The column scale factors for A. *//*  ROWCND  (input) DOUBLE PRECISION *//*          Ratio of the smallest R(i) to the largest R(i). *//*  COLCND  (input) DOUBLE PRECISION *//*          Ratio of the smallest C(i) to the largest C(i). *//*  AMAX    (input) DOUBLE PRECISION *//*          Absolute value of largest matrix entry. *//*  EQUED   (output) CHARACTER*1 *//*          Specifies the form of equilibration that was done. *//*          = 'N':  No equilibration *//*          = 'R':  Row equilibration, i.e., A has been premultiplied by *//*                  diag(R). *//*          = 'C':  Column equilibration, i.e., A has been postmultiplied *//*                  by diag(C). *//*          = 'B':  Both row and column equilibration, i.e., A has been *//*                  replaced by diag(R) * A * diag(C). *//*  Internal Parameters *//*  =================== *//*  THRESH is a threshold value used to decide if row or column scaling *//*  should be done based on the ratio of the row or column scaling *//*  factors.  If ROWCND < THRESH, row scaling is done, and if *//*  COLCND < THRESH, column scaling is done. *//*  LARGE and SMALL are threshold values used to decide if row scaling *//*  should be done based on the absolute size of the largest matrix *//*  element.  If AMAX > LARGE or AMAX < SMALL, row scaling is done. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --r__;    --c__;    /* Function Body */    if (*m <= 0 || *n <= 0) {	*(unsigned char *)equed = 'N';	return 0;    }/*     Initialize LARGE and SMALL. */    small = dlamch_("Safe minimum") / dlamch_("Precision");    large = 1. / small;    if (*rowcnd >= .1 && *amax >= small && *amax <= large) {/*        No row scaling */	if (*colcnd >= .1) {/*           No column scaling */	    *(unsigned char *)equed = 'N';	} else {/*           Column scaling */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		cj = c__[j];/* Computing MAX */		i__2 = 1, i__3 = j - *ku;/* Computing MIN */		i__5 = *m, i__6 = j + *kl;		i__4 = min(i__5,i__6);		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {		    ab[*ku + 1 + i__ - j + j * ab_dim1] = cj * ab[*ku + 1 + 			    i__ - j + j * ab_dim1];/* L10: */		}/* L20: */	    }	    *(unsigned char *)equed = 'C';	}    } else if (*colcnd >= .1) {/*        Row scaling, no column scaling */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/* Computing MAX */	    i__4 = 1, i__2 = j - *ku;/* Computing MIN */	    i__5 = *m, i__6 = j + *kl;	    i__3 = min(i__5,i__6);	    for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {		ab[*ku + 1 + i__ - j + j * ab_dim1] = r__[i__] * ab[*ku + 1 + 			i__ - j + j * ab_dim1];/* L30: */	    }/* L40: */	}	*(unsigned char *)equed = 'R';    } else {/*        Row and column scaling */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    cj = c__[j];/* Computing MAX */	    i__3 = 1, i__4 = j - *ku;/* Computing MIN */	    i__5 = *m, i__6 = j + *kl;	    i__2 = min(i__5,i__6);	    for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) {		ab[*ku + 1 + i__ - j + j * ab_dim1] = cj * r__[i__] * ab[*ku 			+ 1 + i__ - j + j * ab_dim1];/* L50: */	    }/* L60: */	}	*(unsigned char *)equed = 'B';    }    return 0;/*     End of DLAQGB */} /* dlaqgb_ */
 |