| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 | /* dlanst.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;doublereal dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e){    /* System generated locals */    integer i__1;    doublereal ret_val, d__1, d__2, d__3, d__4, d__5;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__;    doublereal sum, scale;    extern logical lsame_(char *, char *);    doublereal anorm;    extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, 	    doublereal *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLANST  returns the value of the one norm,  or the Frobenius norm, or *//*  the  infinity norm,  or the  element of  largest absolute value  of a *//*  real symmetric tridiagonal matrix A. *//*  Description *//*  =========== *//*  DLANST returns the value *//*     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' *//*              ( *//*              ( norm1(A),         NORM = '1', 'O' or 'o' *//*              ( *//*              ( normI(A),         NORM = 'I' or 'i' *//*              ( *//*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' *//*  where  norm1  denotes the  one norm of a matrix (maximum column sum), *//*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and *//*  normF  denotes the  Frobenius norm of a matrix (square root of sum of *//*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. *//*  Arguments *//*  ========= *//*  NORM    (input) CHARACTER*1 *//*          Specifies the value to be returned in DLANST as described *//*          above. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0.  When N = 0, DLANST is *//*          set to zero. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The diagonal elements of A. *//*  E       (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) sub-diagonal or super-diagonal elements of A. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --e;    --d__;    /* Function Body */    if (*n <= 0) {	anorm = 0.;    } else if (lsame_(norm, "M")) {/*        Find max(abs(A(i,j))). */	anorm = (d__1 = d__[*n], abs(d__1));	i__1 = *n - 1;	for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */	    d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));	    anorm = max(d__2,d__3);/* Computing MAX */	    d__2 = anorm, d__3 = (d__1 = e[i__], abs(d__1));	    anorm = max(d__2,d__3);/* L10: */	}    } else if (lsame_(norm, "O") || *(unsigned char *)	    norm == '1' || lsame_(norm, "I")) {/*        Find norm1(A). */	if (*n == 1) {	    anorm = abs(d__[1]);	} else {/* Computing MAX */	    d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = e[*n - 1], abs(		    d__1)) + (d__2 = d__[*n], abs(d__2));	    anorm = max(d__3,d__4);	    i__1 = *n - 1;	    for (i__ = 2; i__ <= i__1; ++i__) {/* Computing MAX */		d__4 = anorm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[			i__], abs(d__2)) + (d__3 = e[i__ - 1], abs(d__3));		anorm = max(d__4,d__5);/* L20: */	    }	}    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {/*        Find normF(A). */	scale = 0.;	sum = 1.;	if (*n > 1) {	    i__1 = *n - 1;	    dlassq_(&i__1, &e[1], &c__1, &scale, &sum);	    sum *= 2;	}	dlassq_(n, &d__[1], &c__1, &scale, &sum);	anorm = scale * sqrt(sum);    }    ret_val = anorm;    return ret_val;/*     End of DLANST */} /* dlanst_ */
 |