| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 | 
							- /* dlaneg.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- integer dlaneg_(integer *n, doublereal *d__, doublereal *lld, doublereal *
 
- 	sigma, doublereal *pivmin, integer *r__)
 
- {
 
-     /* System generated locals */
 
-     integer ret_val, i__1, i__2, i__3, i__4;
 
-     /* Local variables */
 
-     integer j;
 
-     doublereal p, t;
 
-     integer bj;
 
-     doublereal tmp;
 
-     integer neg1, neg2;
 
-     doublereal bsav, gamma, dplus;
 
-     extern logical disnan_(doublereal *);
 
-     integer negcnt;
 
-     logical sawnan;
 
-     doublereal dminus;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLANEG computes the Sturm count, the number of negative pivots */
 
- /*  encountered while factoring tridiagonal T - sigma I = L D L^T. */
 
- /*  This implementation works directly on the factors without forming */
 
- /*  the tridiagonal matrix T.  The Sturm count is also the number of */
 
- /*  eigenvalues of T less than sigma. */
 
- /*  This routine is called from DLARRB. */
 
- /*  The current routine does not use the PIVMIN parameter but rather */
 
- /*  requires IEEE-754 propagation of Infinities and NaNs.  This */
 
- /*  routine also has no input range restrictions but does require */
 
- /*  default exception handling such that x/0 produces Inf when x is */
 
- /*  non-zero, and Inf/Inf produces NaN.  For more information, see: */
 
- /*    Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in */
 
- /*    Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on */
 
- /*    Scientific Computing, v28, n5, 2006.  DOI 10.1137/050641624 */
 
- /*    (Tech report version in LAWN 172 with the same title.) */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The N diagonal elements of the diagonal matrix D. */
 
- /*  LLD     (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (N-1) elements L(i)*L(i)*D(i). */
 
- /*  SIGMA   (input) DOUBLE PRECISION */
 
- /*          Shift amount in T - sigma I = L D L^T. */
 
- /*  PIVMIN  (input) DOUBLE PRECISION */
 
- /*          The minimum pivot in the Sturm sequence.  May be used */
 
- /*          when zero pivots are encountered on non-IEEE-754 */
 
- /*          architectures. */
 
- /*  R       (input) INTEGER */
 
- /*          The twist index for the twisted factorization that is used */
 
- /*          for the negcount. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Osni Marques, LBNL/NERSC, USA */
 
- /*     Christof Voemel, University of California, Berkeley, USA */
 
- /*     Jason Riedy, University of California, Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     Some architectures propagate Infinities and NaNs very slowly, so */
 
- /*     the code computes counts in BLKLEN chunks.  Then a NaN can */
 
- /*     propagate at most BLKLEN columns before being detected.  This is */
 
- /*     not a general tuning parameter; it needs only to be just large */
 
- /*     enough that the overhead is tiny in common cases. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --lld;
 
-     --d__;
 
-     /* Function Body */
 
-     negcnt = 0;
 
- /*     I) upper part: L D L^T - SIGMA I = L+ D+ L+^T */
 
-     t = -(*sigma);
 
-     i__1 = *r__ - 1;
 
-     for (bj = 1; bj <= i__1; bj += 128) {
 
- 	neg1 = 0;
 
- 	bsav = t;
 
- /* Computing MIN */
 
- 	i__3 = bj + 127, i__4 = *r__ - 1;
 
- 	i__2 = min(i__3,i__4);
 
- 	for (j = bj; j <= i__2; ++j) {
 
- 	    dplus = d__[j] + t;
 
- 	    if (dplus < 0.) {
 
- 		++neg1;
 
- 	    }
 
- 	    tmp = t / dplus;
 
- 	    t = tmp * lld[j] - *sigma;
 
- /* L21: */
 
- 	}
 
- 	sawnan = disnan_(&t);
 
- /*     Run a slower version of the above loop if a NaN is detected. */
 
- /*     A NaN should occur only with a zero pivot after an infinite */
 
- /*     pivot.  In that case, substituting 1 for T/DPLUS is the */
 
- /*     correct limit. */
 
- 	if (sawnan) {
 
- 	    neg1 = 0;
 
- 	    t = bsav;
 
- /* Computing MIN */
 
- 	    i__3 = bj + 127, i__4 = *r__ - 1;
 
- 	    i__2 = min(i__3,i__4);
 
- 	    for (j = bj; j <= i__2; ++j) {
 
- 		dplus = d__[j] + t;
 
- 		if (dplus < 0.) {
 
- 		    ++neg1;
 
- 		}
 
- 		tmp = t / dplus;
 
- 		if (disnan_(&tmp)) {
 
- 		    tmp = 1.;
 
- 		}
 
- 		t = tmp * lld[j] - *sigma;
 
- /* L22: */
 
- 	    }
 
- 	}
 
- 	negcnt += neg1;
 
- /* L210: */
 
-     }
 
- /*     II) lower part: L D L^T - SIGMA I = U- D- U-^T */
 
-     p = d__[*n] - *sigma;
 
-     i__1 = *r__;
 
-     for (bj = *n - 1; bj >= i__1; bj += -128) {
 
- 	neg2 = 0;
 
- 	bsav = p;
 
- /* Computing MAX */
 
- 	i__3 = bj - 127;
 
- 	i__2 = max(i__3,*r__);
 
- 	for (j = bj; j >= i__2; --j) {
 
- 	    dminus = lld[j] + p;
 
- 	    if (dminus < 0.) {
 
- 		++neg2;
 
- 	    }
 
- 	    tmp = p / dminus;
 
- 	    p = tmp * d__[j] - *sigma;
 
- /* L23: */
 
- 	}
 
- 	sawnan = disnan_(&p);
 
- /*     As above, run a slower version that substitutes 1 for Inf/Inf. */
 
- 	if (sawnan) {
 
- 	    neg2 = 0;
 
- 	    p = bsav;
 
- /* Computing MAX */
 
- 	    i__3 = bj - 127;
 
- 	    i__2 = max(i__3,*r__);
 
- 	    for (j = bj; j >= i__2; --j) {
 
- 		dminus = lld[j] + p;
 
- 		if (dminus < 0.) {
 
- 		    ++neg2;
 
- 		}
 
- 		tmp = p / dminus;
 
- 		if (disnan_(&tmp)) {
 
- 		    tmp = 1.;
 
- 		}
 
- 		p = tmp * d__[j] - *sigma;
 
- /* L24: */
 
- 	    }
 
- 	}
 
- 	negcnt += neg2;
 
- /* L230: */
 
-     }
 
- /*     III) Twist index */
 
- /*       T was shifted by SIGMA initially. */
 
-     gamma = t + *sigma + p;
 
-     if (gamma < 0.) {
 
- 	++negcnt;
 
-     }
 
-     ret_val = negcnt;
 
-     return ret_val;
 
- } /* dlaneg_ */
 
 
  |