| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 | /* dlaic1.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b5 = 1.;/* Subroutine */ int dlaic1_(integer *job, integer *j, doublereal *x, 	doublereal *sest, doublereal *w, doublereal *gamma, doublereal *	sestpr, doublereal *s, doublereal *c__){    /* System generated locals */    doublereal d__1, d__2, d__3, d__4;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    doublereal b, t, s1, s2, eps, tmp;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal sine, test, zeta1, zeta2, alpha, norma;    extern doublereal dlamch_(char *);    doublereal absgam, absalp, cosine, absest;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAIC1 applies one step of incremental condition estimation in *//*  its simplest version: *//*  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j *//*  lower triangular matrix L, such that *//*           twonorm(L*x) = sest *//*  Then DLAIC1 computes sestpr, s, c such that *//*  the vector *//*                  [ s*x ] *//*           xhat = [  c  ] *//*  is an approximate singular vector of *//*                  [ L     0  ] *//*           Lhat = [ w' gamma ] *//*  in the sense that *//*           twonorm(Lhat*xhat) = sestpr. *//*  Depending on JOB, an estimate for the largest or smallest singular *//*  value is computed. *//*  Note that [s c]' and sestpr**2 is an eigenpair of the system *//*      diag(sest*sest, 0) + [alpha  gamma] * [ alpha ] *//*                                            [ gamma ] *//*  where  alpha =  x'*w. *//*  Arguments *//*  ========= *//*  JOB     (input) INTEGER *//*          = 1: an estimate for the largest singular value is computed. *//*          = 2: an estimate for the smallest singular value is computed. *//*  J       (input) INTEGER *//*          Length of X and W *//*  X       (input) DOUBLE PRECISION array, dimension (J) *//*          The j-vector x. *//*  SEST    (input) DOUBLE PRECISION *//*          Estimated singular value of j by j matrix L *//*  W       (input) DOUBLE PRECISION array, dimension (J) *//*          The j-vector w. *//*  GAMMA   (input) DOUBLE PRECISION *//*          The diagonal element gamma. *//*  SESTPR  (output) DOUBLE PRECISION *//*          Estimated singular value of (j+1) by (j+1) matrix Lhat. *//*  S       (output) DOUBLE PRECISION *//*          Sine needed in forming xhat. *//*  C       (output) DOUBLE PRECISION *//*          Cosine needed in forming xhat. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --w;    --x;    /* Function Body */    eps = dlamch_("Epsilon");    alpha = ddot_(j, &x[1], &c__1, &w[1], &c__1);    absalp = abs(alpha);    absgam = abs(*gamma);    absest = abs(*sest);    if (*job == 1) {/*        Estimating largest singular value *//*        special cases */	if (*sest == 0.) {	    s1 = max(absgam,absalp);	    if (s1 == 0.) {		*s = 0.;		*c__ = 1.;		*sestpr = 0.;	    } else {		*s = alpha / s1;		*c__ = *gamma / s1;		tmp = sqrt(*s * *s + *c__ * *c__);		*s /= tmp;		*c__ /= tmp;		*sestpr = s1 * tmp;	    }	    return 0;	} else if (absgam <= eps * absest) {	    *s = 1.;	    *c__ = 0.;	    tmp = max(absest,absalp);	    s1 = absest / tmp;	    s2 = absalp / tmp;	    *sestpr = tmp * sqrt(s1 * s1 + s2 * s2);	    return 0;	} else if (absalp <= eps * absest) {	    s1 = absgam;	    s2 = absest;	    if (s1 <= s2) {		*s = 1.;		*c__ = 0.;		*sestpr = s2;	    } else {		*s = 0.;		*c__ = 1.;		*sestpr = s1;	    }	    return 0;	} else if (absest <= eps * absalp || absest <= eps * absgam) {	    s1 = absgam;	    s2 = absalp;	    if (s1 <= s2) {		tmp = s1 / s2;		*s = sqrt(tmp * tmp + 1.);		*sestpr = s2 * *s;		*c__ = *gamma / s2 / *s;		*s = d_sign(&c_b5, &alpha) / *s;	    } else {		tmp = s2 / s1;		*c__ = sqrt(tmp * tmp + 1.);		*sestpr = s1 * *c__;		*s = alpha / s1 / *c__;		*c__ = d_sign(&c_b5, gamma) / *c__;	    }	    return 0;	} else {/*           normal case */	    zeta1 = alpha / absest;	    zeta2 = *gamma / absest;	    b = (1. - zeta1 * zeta1 - zeta2 * zeta2) * .5;	    *c__ = zeta1 * zeta1;	    if (b > 0.) {		t = *c__ / (b + sqrt(b * b + *c__));	    } else {		t = sqrt(b * b + *c__) - b;	    }	    sine = -zeta1 / t;	    cosine = -zeta2 / (t + 1.);	    tmp = sqrt(sine * sine + cosine * cosine);	    *s = sine / tmp;	    *c__ = cosine / tmp;	    *sestpr = sqrt(t + 1.) * absest;	    return 0;	}    } else if (*job == 2) {/*        Estimating smallest singular value *//*        special cases */	if (*sest == 0.) {	    *sestpr = 0.;	    if (max(absgam,absalp) == 0.) {		sine = 1.;		cosine = 0.;	    } else {		sine = -(*gamma);		cosine = alpha;	    }/* Computing MAX */	    d__1 = abs(sine), d__2 = abs(cosine);	    s1 = max(d__1,d__2);	    *s = sine / s1;	    *c__ = cosine / s1;	    tmp = sqrt(*s * *s + *c__ * *c__);	    *s /= tmp;	    *c__ /= tmp;	    return 0;	} else if (absgam <= eps * absest) {	    *s = 0.;	    *c__ = 1.;	    *sestpr = absgam;	    return 0;	} else if (absalp <= eps * absest) {	    s1 = absgam;	    s2 = absest;	    if (s1 <= s2) {		*s = 0.;		*c__ = 1.;		*sestpr = s1;	    } else {		*s = 1.;		*c__ = 0.;		*sestpr = s2;	    }	    return 0;	} else if (absest <= eps * absalp || absest <= eps * absgam) {	    s1 = absgam;	    s2 = absalp;	    if (s1 <= s2) {		tmp = s1 / s2;		*c__ = sqrt(tmp * tmp + 1.);		*sestpr = absest * (tmp / *c__);		*s = -(*gamma / s2) / *c__;		*c__ = d_sign(&c_b5, &alpha) / *c__;	    } else {		tmp = s2 / s1;		*s = sqrt(tmp * tmp + 1.);		*sestpr = absest / *s;		*c__ = alpha / s1 / *s;		*s = -d_sign(&c_b5, gamma) / *s;	    }	    return 0;	} else {/*           normal case */	    zeta1 = alpha / absest;	    zeta2 = *gamma / absest;/* Computing MAX */	    d__3 = zeta1 * zeta1 + 1. + (d__1 = zeta1 * zeta2, abs(d__1)), 		    d__4 = (d__2 = zeta1 * zeta2, abs(d__2)) + zeta2 * zeta2;	    norma = max(d__3,d__4);/*           See if root is closer to zero or to ONE */	    test = (zeta1 - zeta2) * 2. * (zeta1 + zeta2) + 1.;	    if (test >= 0.) {/*              root is close to zero, compute directly */		b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.) * .5;		*c__ = zeta2 * zeta2;		t = *c__ / (b + sqrt((d__1 = b * b - *c__, abs(d__1))));		sine = zeta1 / (1. - t);		cosine = -zeta2 / t;		*sestpr = sqrt(t + eps * 4. * eps * norma) * absest;	    } else {/*              root is closer to ONE, shift by that amount */		b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.) * .5;		*c__ = zeta1 * zeta1;		if (b >= 0.) {		    t = -(*c__) / (b + sqrt(b * b + *c__));		} else {		    t = b - sqrt(b * b + *c__);		}		sine = -zeta1 / t;		cosine = -zeta2 / (t + 1.);		*sestpr = sqrt(t + 1. + eps * 4. * eps * norma) * absest;	    }	    tmp = sqrt(sine * sine + cosine * cosine);	    *s = sine / tmp;	    *c__ = cosine / tmp;	    return 0;	}    }    return 0;/*     End of DLAIC1 */} /* dlaic1_ */
 |