| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 | /* dlags2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dlags2_(logical *upper, doublereal *a1, doublereal *a2, 	doublereal *a3, doublereal *b1, doublereal *b2, doublereal *b3, 	doublereal *csu, doublereal *snu, doublereal *csv, doublereal *snv, 	doublereal *csq, doublereal *snq){    /* System generated locals */    doublereal d__1;    /* Local variables */    doublereal a, b, c__, d__, r__, s1, s2, ua11, ua12, ua21, ua22, vb11, 	    vb12, vb21, vb22, csl, csr, snl, snr, aua11, aua12, aua21, aua22, 	    avb11, avb12, avb21, avb22, ua11r, ua22r, vb11r, vb22r;    extern /* Subroutine */ int dlasv2_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *), dlartg_(doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such *//*  that if ( UPPER ) then *//*            U'*A*Q = U'*( A1 A2 )*Q = ( x  0  ) *//*                        ( 0  A3 )     ( x  x  ) *//*  and *//*            V'*B*Q = V'*( B1 B2 )*Q = ( x  0  ) *//*                        ( 0  B3 )     ( x  x  ) *//*  or if ( .NOT.UPPER ) then *//*            U'*A*Q = U'*( A1 0  )*Q = ( x  x  ) *//*                        ( A2 A3 )     ( 0  x  ) *//*  and *//*            V'*B*Q = V'*( B1 0  )*Q = ( x  x  ) *//*                        ( B2 B3 )     ( 0  x  ) *//*  The rows of the transformed A and B are parallel, where *//*    U = (  CSU  SNU ), V = (  CSV SNV ), Q = (  CSQ   SNQ ) *//*        ( -SNU  CSU )      ( -SNV CSV )      ( -SNQ   CSQ ) *//*  Z' denotes the transpose of Z. *//*  Arguments *//*  ========= *//*  UPPER   (input) LOGICAL *//*          = .TRUE.: the input matrices A and B are upper triangular. *//*          = .FALSE.: the input matrices A and B are lower triangular. *//*  A1      (input) DOUBLE PRECISION *//*  A2      (input) DOUBLE PRECISION *//*  A3      (input) DOUBLE PRECISION *//*          On entry, A1, A2 and A3 are elements of the input 2-by-2 *//*          upper (lower) triangular matrix A. *//*  B1      (input) DOUBLE PRECISION *//*  B2      (input) DOUBLE PRECISION *//*  B3      (input) DOUBLE PRECISION *//*          On entry, B1, B2 and B3 are elements of the input 2-by-2 *//*          upper (lower) triangular matrix B. *//*  CSU     (output) DOUBLE PRECISION *//*  SNU     (output) DOUBLE PRECISION *//*          The desired orthogonal matrix U. *//*  CSV     (output) DOUBLE PRECISION *//*  SNV     (output) DOUBLE PRECISION *//*          The desired orthogonal matrix V. *//*  CSQ     (output) DOUBLE PRECISION *//*  SNQ     (output) DOUBLE PRECISION *//*          The desired orthogonal matrix Q. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    if (*upper) {/*        Input matrices A and B are upper triangular matrices *//*        Form matrix C = A*adj(B) = ( a b ) *//*                                   ( 0 d ) */	a = *a1 * *b3;	d__ = *a3 * *b1;	b = *a2 * *b1 - *a1 * *b2;/*        The SVD of real 2-by-2 triangular C *//*         ( CSL -SNL )*( A B )*(  CSR  SNR ) = ( R 0 ) *//*         ( SNL  CSL ) ( 0 D ) ( -SNR  CSR )   ( 0 T ) */	dlasv2_(&a, &b, &d__, &s1, &s2, &snr, &csr, &snl, &csl);	if (abs(csl) >= abs(snl) || abs(csr) >= abs(snr)) {/*           Compute the (1,1) and (1,2) elements of U'*A and V'*B, *//*           and (1,2) element of |U|'*|A| and |V|'*|B|. */	    ua11r = csl * *a1;	    ua12 = csl * *a2 + snl * *a3;	    vb11r = csr * *b1;	    vb12 = csr * *b2 + snr * *b3;	    aua12 = abs(csl) * abs(*a2) + abs(snl) * abs(*a3);	    avb12 = abs(csr) * abs(*b2) + abs(snr) * abs(*b3);/*           zero (1,2) elements of U'*A and V'*B */	    if (abs(ua11r) + abs(ua12) != 0.) {		if (aua12 / (abs(ua11r) + abs(ua12)) <= avb12 / (abs(vb11r) + 			abs(vb12))) {		    d__1 = -ua11r;		    dlartg_(&d__1, &ua12, csq, snq, &r__);		} else {		    d__1 = -vb11r;		    dlartg_(&d__1, &vb12, csq, snq, &r__);		}	    } else {		d__1 = -vb11r;		dlartg_(&d__1, &vb12, csq, snq, &r__);	    }	    *csu = csl;	    *snu = -snl;	    *csv = csr;	    *snv = -snr;	} else {/*           Compute the (2,1) and (2,2) elements of U'*A and V'*B, *//*           and (2,2) element of |U|'*|A| and |V|'*|B|. */	    ua21 = -snl * *a1;	    ua22 = -snl * *a2 + csl * *a3;	    vb21 = -snr * *b1;	    vb22 = -snr * *b2 + csr * *b3;	    aua22 = abs(snl) * abs(*a2) + abs(csl) * abs(*a3);	    avb22 = abs(snr) * abs(*b2) + abs(csr) * abs(*b3);/*           zero (2,2) elements of U'*A and V'*B, and then swap. */	    if (abs(ua21) + abs(ua22) != 0.) {		if (aua22 / (abs(ua21) + abs(ua22)) <= avb22 / (abs(vb21) + 			abs(vb22))) {		    d__1 = -ua21;		    dlartg_(&d__1, &ua22, csq, snq, &r__);		} else {		    d__1 = -vb21;		    dlartg_(&d__1, &vb22, csq, snq, &r__);		}	    } else {		d__1 = -vb21;		dlartg_(&d__1, &vb22, csq, snq, &r__);	    }	    *csu = snl;	    *snu = csl;	    *csv = snr;	    *snv = csr;	}    } else {/*        Input matrices A and B are lower triangular matrices *//*        Form matrix C = A*adj(B) = ( a 0 ) *//*                                   ( c d ) */	a = *a1 * *b3;	d__ = *a3 * *b1;	c__ = *a2 * *b3 - *a3 * *b2;/*        The SVD of real 2-by-2 triangular C *//*         ( CSL -SNL )*( A 0 )*(  CSR  SNR ) = ( R 0 ) *//*         ( SNL  CSL ) ( C D ) ( -SNR  CSR )   ( 0 T ) */	dlasv2_(&a, &c__, &d__, &s1, &s2, &snr, &csr, &snl, &csl);	if (abs(csr) >= abs(snr) || abs(csl) >= abs(snl)) {/*           Compute the (2,1) and (2,2) elements of U'*A and V'*B, *//*           and (2,1) element of |U|'*|A| and |V|'*|B|. */	    ua21 = -snr * *a1 + csr * *a2;	    ua22r = csr * *a3;	    vb21 = -snl * *b1 + csl * *b2;	    vb22r = csl * *b3;	    aua21 = abs(snr) * abs(*a1) + abs(csr) * abs(*a2);	    avb21 = abs(snl) * abs(*b1) + abs(csl) * abs(*b2);/*           zero (2,1) elements of U'*A and V'*B. */	    if (abs(ua21) + abs(ua22r) != 0.) {		if (aua21 / (abs(ua21) + abs(ua22r)) <= avb21 / (abs(vb21) + 			abs(vb22r))) {		    dlartg_(&ua22r, &ua21, csq, snq, &r__);		} else {		    dlartg_(&vb22r, &vb21, csq, snq, &r__);		}	    } else {		dlartg_(&vb22r, &vb21, csq, snq, &r__);	    }	    *csu = csr;	    *snu = -snr;	    *csv = csl;	    *snv = -snl;	} else {/*           Compute the (1,1) and (1,2) elements of U'*A and V'*B, *//*           and (1,1) element of |U|'*|A| and |V|'*|B|. */	    ua11 = csr * *a1 + snr * *a2;	    ua12 = snr * *a3;	    vb11 = csl * *b1 + snl * *b2;	    vb12 = snl * *b3;	    aua11 = abs(csr) * abs(*a1) + abs(snr) * abs(*a2);	    avb11 = abs(csl) * abs(*b1) + abs(snl) * abs(*b2);/*           zero (1,1) elements of U'*A and V'*B, and then swap. */	    if (abs(ua11) + abs(ua12) != 0.) {		if (aua11 / (abs(ua11) + abs(ua12)) <= avb11 / (abs(vb11) + 			abs(vb12))) {		    dlartg_(&ua12, &ua11, csq, snq, &r__);		} else {		    dlartg_(&vb12, &vb11, csq, snq, &r__);		}	    } else {		dlartg_(&vb12, &vb11, csq, snq, &r__);	    }	    *csu = snr;	    *snu = csr;	    *csv = snl;	    *snv = csl;	}    }    return 0;/*     End of DLAGS2 */} /* dlags2_ */
 |