| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 | /* dlaeda.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__2 = 2;static integer c__1 = 1;static doublereal c_b24 = 1.;static doublereal c_b26 = 0.;/* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl, 	integer *curpbm, integer *prmptr, integer *perm, integer *givptr, 	integer *givcol, doublereal *givnum, doublereal *q, integer *qptr, 	doublereal *z__, doublereal *ztemp, integer *info){    /* System generated locals */    integer i__1, i__2, i__3;    /* Builtin functions */    integer pow_ii(integer *, integer *);    double sqrt(doublereal);    /* Local variables */    integer i__, k, mid, ptr;    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1;    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *), xerbla_(char *, 	     integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAEDA computes the Z vector corresponding to the merge step in the *//*  CURLVLth step of the merge process with TLVLS steps for the CURPBMth *//*  problem. *//*  Arguments *//*  ========= *//*  N      (input) INTEGER *//*         The dimension of the symmetric tridiagonal matrix.  N >= 0. *//*  TLVLS  (input) INTEGER *//*         The total number of merging levels in the overall divide and *//*         conquer tree. *//*  CURLVL (input) INTEGER *//*         The current level in the overall merge routine, *//*         0 <= curlvl <= tlvls. *//*  CURPBM (input) INTEGER *//*         The current problem in the current level in the overall *//*         merge routine (counting from upper left to lower right). *//*  PRMPTR (input) INTEGER array, dimension (N lg N) *//*         Contains a list of pointers which indicate where in PERM a *//*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) *//*         indicates the size of the permutation and incidentally the *//*         size of the full, non-deflated problem. *//*  PERM   (input) INTEGER array, dimension (N lg N) *//*         Contains the permutations (from deflation and sorting) to be *//*         applied to each eigenblock. *//*  GIVPTR (input) INTEGER array, dimension (N lg N) *//*         Contains a list of pointers which indicate where in GIVCOL a *//*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) *//*         indicates the number of Givens rotations. *//*  GIVCOL (input) INTEGER array, dimension (2, N lg N) *//*         Each pair of numbers indicates a pair of columns to take place *//*         in a Givens rotation. *//*  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) *//*         Each number indicates the S value to be used in the *//*         corresponding Givens rotation. *//*  Q      (input) DOUBLE PRECISION array, dimension (N**2) *//*         Contains the square eigenblocks from previous levels, the *//*         starting positions for blocks are given by QPTR. *//*  QPTR   (input) INTEGER array, dimension (N+2) *//*         Contains a list of pointers which indicate where in Q an *//*         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates *//*         the size of the block. *//*  Z      (output) DOUBLE PRECISION array, dimension (N) *//*         On output this vector contains the updating vector (the last *//*         row of the first sub-eigenvector matrix and the first row of *//*         the second sub-eigenvector matrix). *//*  ZTEMP  (workspace) DOUBLE PRECISION array, dimension (N) *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ztemp;    --z__;    --qptr;    --q;    givnum -= 3;    givcol -= 3;    --givptr;    --perm;    --prmptr;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLAEDA", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Determine location of first number in second half. */    mid = *n / 2 + 1;/*     Gather last/first rows of appropriate eigenblocks into center of Z */    ptr = 1;/*     Determine location of lowest level subproblem in the full storage *//*     scheme */    i__1 = *curlvl - 1;    curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;/*     Determine size of these matrices.  We add HALF to the value of *//*     the SQRT in case the machine underestimates one of these square *//*     roots. */    bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);    bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) + 	    .5);    i__1 = mid - bsiz1 - 1;    for (k = 1; k <= i__1; ++k) {	z__[k] = 0.;/* L10: */    }    dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &	    c__1);    dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);    i__1 = *n;    for (k = mid + bsiz2; k <= i__1; ++k) {	z__[k] = 0.;/* L20: */    }/*     Loop thru remaining levels 1 -> CURLVL applying the Givens *//*     rotations and permutation and then multiplying the center matrices *//*     against the current Z. */    ptr = pow_ii(&c__2, tlvls) + 1;    i__1 = *curlvl - 1;    for (k = 1; k <= i__1; ++k) {	i__2 = *curlvl - k;	i__3 = *curlvl - k - 1;	curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 		1;	psiz1 = prmptr[curr + 1] - prmptr[curr];	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];	zptr1 = mid - psiz1;/*       Apply Givens at CURR and CURR+1 */	i__2 = givptr[curr + 1] - 1;	for (i__ = givptr[curr]; i__ <= i__2; ++i__) {	    drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, &		    z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[(		    i__ << 1) + 1], &givnum[(i__ << 1) + 2]);/* L30: */	}	i__2 = givptr[curr + 2] - 1;	for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {	    drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[		    mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << 		    1) + 1], &givnum[(i__ << 1) + 2]);/* L40: */	}	psiz1 = prmptr[curr + 1] - prmptr[curr];	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];	i__2 = psiz1 - 1;	for (i__ = 0; i__ <= i__2; ++i__) {	    ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];/* L50: */	}	i__2 = psiz2 - 1;	for (i__ = 0; i__ <= i__2; ++i__) {	    ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 		    1];/* L60: */	}/*        Multiply Blocks at CURR and CURR+1 *//*        Determine size of these matrices.  We add HALF to the value of *//*        the SQRT in case the machine underestimates one of these *//*        square roots. */	bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + 		.5);	bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])		) + .5);	if (bsiz1 > 0) {	    dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, &		    ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1);	}	i__2 = psiz1 - bsiz1;	dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);	if (bsiz2 > 0) {	    dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, &		    ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1);	}	i__2 = psiz2 - bsiz2;	dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &		c__1);	i__2 = *tlvls - k;	ptr += pow_ii(&c__2, &i__2);/* L70: */    }    return 0;/*     End of DLAEDA */} /* dlaeda_ */
 |