| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 | /* dla_rpvgrw.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"doublereal dla_rpvgrw__(integer *n, integer *ncols, doublereal *a, integer *	lda, doublereal *af, integer *ldaf){    /* System generated locals */    integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;    doublereal ret_val, d__1, d__2;    /* Local variables */    integer i__, j;    doublereal amax, umax, rpvgrw;/*     -- LAPACK routine (version 3.2.1)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLA_RPVGRW computes the reciprocal pivot growth factor *//*  norm(A)/norm(U). The "max absolute element" norm is used. If this is *//*  much less than 1, the stability of the LU factorization of the *//*  (equilibrated) matrix A could be poor. This also means that the *//*  solution X, estimated condition numbers, and error bounds could be *//*  unreliable. *//*  Arguments *//*  ========= *//*     N       (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     NCOLS   (input) INTEGER *//*     The number of columns of the matrix A. NCOLS >= 0. *//*     A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*     On entry, the N-by-N matrix A. *//*     LDA     (input) INTEGER *//*     The leading dimension of the array A.  LDA >= max(1,N). *//*     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N) *//*     The factors L and U from the factorization *//*     A = P*L*U as computed by DGETRF. *//*     LDAF    (input) INTEGER *//*     The leading dimension of the array AF.  LDAF >= max(1,N). *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    af_dim1 = *ldaf;    af_offset = 1 + af_dim1;    af -= af_offset;    /* Function Body */    rpvgrw = 1.;    i__1 = *ncols;    for (j = 1; j <= i__1; ++j) {	amax = 0.;	umax = 0.;	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */	    d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1));	    amax = max(d__2,amax);	}	i__2 = j;	for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */	    d__2 = (d__1 = af[i__ + j * af_dim1], abs(d__1));	    umax = max(d__2,umax);	}	if (umax != 0.) {/* Computing MIN */	    d__1 = amax / umax;	    rpvgrw = min(d__1,rpvgrw);	}    }    ret_val = rpvgrw;    return ret_val;} /* dla_rpvgrw__ */
 |