| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 | /* dgtcon.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dgtcon_(char *norm, integer *n, doublereal *dl, 	doublereal *d__, doublereal *du, doublereal *du2, integer *ipiv, 	doublereal *anorm, doublereal *rcond, doublereal *work, integer *	iwork, integer *info){    /* System generated locals */    integer i__1;    /* Local variables */    integer i__, kase, kase1;    extern logical lsame_(char *, char *);    integer isave[3];    extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *), xerbla_(char *, 	    integer *);    doublereal ainvnm;    logical onenrm;    extern /* Subroutine */ int dgttrs_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGTCON estimates the reciprocal of the condition number of a real *//*  tridiagonal matrix A using the LU factorization as computed by *//*  DGTTRF. *//*  An estimate is obtained for norm(inv(A)), and the reciprocal of the *//*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). *//*  Arguments *//*  ========= *//*  NORM    (input) CHARACTER*1 *//*          Specifies whether the 1-norm condition number or the *//*          infinity-norm condition number is required: *//*          = '1' or 'O':  1-norm; *//*          = 'I':         Infinity-norm. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  DL      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) multipliers that define the matrix L from the *//*          LU factorization of A as computed by DGTTRF. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the upper triangular matrix U from *//*          the LU factorization of A. *//*  DU      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) elements of the first superdiagonal of U. *//*  DU2     (input) DOUBLE PRECISION array, dimension (N-2) *//*          The (n-2) elements of the second superdiagonal of U. *//*  IPIV    (input) INTEGER array, dimension (N) *//*          The pivot indices; for 1 <= i <= n, row i of the matrix was *//*          interchanged with row IPIV(i).  IPIV(i) will always be either *//*          i or i+1; IPIV(i) = i indicates a row interchange was not *//*          required. *//*  ANORM   (input) DOUBLE PRECISION *//*          If NORM = '1' or 'O', the 1-norm of the original matrix A. *//*          If NORM = 'I', the infinity-norm of the original matrix A. *//*  RCOND   (output) DOUBLE PRECISION *//*          The reciprocal of the condition number of the matrix A, *//*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an *//*          estimate of the 1-norm of inv(A) computed in this routine. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments. */    /* Parameter adjustments */    --iwork;    --work;    --ipiv;    --du2;    --du;    --d__;    --dl;    /* Function Body */    *info = 0;    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");    if (! onenrm && ! lsame_(norm, "I")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*anorm < 0.) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGTCON", &i__1);	return 0;    }/*     Quick return if possible */    *rcond = 0.;    if (*n == 0) {	*rcond = 1.;	return 0;    } else if (*anorm == 0.) {	return 0;    }/*     Check that D(1:N) is non-zero. */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	if (d__[i__] == 0.) {	    return 0;	}/* L10: */    }    ainvnm = 0.;    if (onenrm) {	kase1 = 1;    } else {	kase1 = 2;    }    kase = 0;L20:    dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);    if (kase != 0) {	if (kase == kase1) {/*           Multiply by inv(U)*inv(L). */	    dgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1], &ipiv[1], &work[1], n, info);	} else {/*           Multiply by inv(L')*inv(U'). */	    dgttrs_("Transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1], &		    ipiv[1], &work[1], n, info);	}	goto L20;    }/*     Compute the estimate of the reciprocal condition number. */    if (ainvnm != 0.) {	*rcond = 1. / ainvnm / *anorm;    }    return 0;/*     End of DGTCON */} /* dgtcon_ */
 |