| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 | /* dgghrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b10 = 0.;static doublereal c_b11 = 1.;static integer c__1 = 1;/* Subroutine */ int dgghrd_(char *compq, char *compz, integer *n, integer *	ilo, integer *ihi, doublereal *a, integer *lda, doublereal *b, 	integer *ldb, doublereal *q, integer *ldq, doublereal *z__, integer *	ldz, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 	    z_offset, i__1, i__2, i__3;    /* Local variables */    doublereal c__, s;    logical ilq, ilz;    integer jcol;    doublereal temp;    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer jrow;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *), xerbla_(char *, integer *);    integer icompq, icompz;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGHRD reduces a pair of real matrices (A,B) to generalized upper *//*  Hessenberg form using orthogonal transformations, where A is a *//*  general matrix and B is upper triangular.  The form of the *//*  generalized eigenvalue problem is *//*     A*x = lambda*B*x, *//*  and B is typically made upper triangular by computing its QR *//*  factorization and moving the orthogonal matrix Q to the left side *//*  of the equation. *//*  This subroutine simultaneously reduces A to a Hessenberg matrix H: *//*     Q**T*A*Z = H *//*  and transforms B to another upper triangular matrix T: *//*     Q**T*B*Z = T *//*  in order to reduce the problem to its standard form *//*     H*y = lambda*T*y *//*  where y = Z**T*x. *//*  The orthogonal matrices Q and Z are determined as products of Givens *//*  rotations.  They may either be formed explicitly, or they may be *//*  postmultiplied into input matrices Q1 and Z1, so that *//*       Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T *//*       Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T *//*  If Q1 is the orthogonal matrix from the QR factorization of B in the *//*  original equation A*x = lambda*B*x, then DGGHRD reduces the original *//*  problem to generalized Hessenberg form. *//*  Arguments *//*  ========= *//*  COMPQ   (input) CHARACTER*1 *//*          = 'N': do not compute Q; *//*          = 'I': Q is initialized to the unit matrix, and the *//*                 orthogonal matrix Q is returned; *//*          = 'V': Q must contain an orthogonal matrix Q1 on entry, *//*                 and the product Q1*Q is returned. *//*  COMPZ   (input) CHARACTER*1 *//*          = 'N': do not compute Z; *//*          = 'I': Z is initialized to the unit matrix, and the *//*                 orthogonal matrix Z is returned; *//*          = 'V': Z must contain an orthogonal matrix Z1 on entry, *//*                 and the product Z1*Z is returned. *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  ILO     (input) INTEGER *//*  IHI     (input) INTEGER *//*          ILO and IHI mark the rows and columns of A which are to be *//*          reduced.  It is assumed that A is already upper triangular *//*          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are *//*          normally set by a previous call to SGGBAL; otherwise they *//*          should be set to 1 and N respectively. *//*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the N-by-N general matrix to be reduced. *//*          On exit, the upper triangle and the first subdiagonal of A *//*          are overwritten with the upper Hessenberg matrix H, and the *//*          rest is set to zero. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) *//*          On entry, the N-by-N upper triangular matrix B. *//*          On exit, the upper triangular matrix T = Q**T B Z.  The *//*          elements below the diagonal are set to zero. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N) *//*          On entry, if COMPQ = 'V', the orthogonal matrix Q1, *//*          typically from the QR factorization of B. *//*          On exit, if COMPQ='I', the orthogonal matrix Q, and if *//*          COMPQ = 'V', the product Q1*Q. *//*          Not referenced if COMPQ='N'. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q. *//*          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. *//*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          On entry, if COMPZ = 'V', the orthogonal matrix Z1. *//*          On exit, if COMPZ='I', the orthogonal matrix Z, and if *//*          COMPZ = 'V', the product Z1*Z. *//*          Not referenced if COMPZ='N'. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z. *//*          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  This routine reduces A to Hessenberg and B to triangular form by *//*  an unblocked reduction, as described in _Matrix_Computations_, *//*  by Golub and Van Loan (Johns Hopkins Press.) *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode COMPQ */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    /* Function Body */    if (lsame_(compq, "N")) {	ilq = FALSE_;	icompq = 1;    } else if (lsame_(compq, "V")) {	ilq = TRUE_;	icompq = 2;    } else if (lsame_(compq, "I")) {	ilq = TRUE_;	icompq = 3;    } else {	icompq = 0;    }/*     Decode COMPZ */    if (lsame_(compz, "N")) {	ilz = FALSE_;	icompz = 1;    } else if (lsame_(compz, "V")) {	ilz = TRUE_;	icompz = 2;    } else if (lsame_(compz, "I")) {	ilz = TRUE_;	icompz = 3;    } else {	icompz = 0;    }/*     Test the input parameters. */    *info = 0;    if (icompq <= 0) {	*info = -1;    } else if (icompz <= 0) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ilo < 1) {	*info = -4;    } else if (*ihi > *n || *ihi < *ilo - 1) {	*info = -5;    } else if (*lda < max(1,*n)) {	*info = -7;    } else if (*ldb < max(1,*n)) {	*info = -9;    } else if (ilq && *ldq < *n || *ldq < 1) {	*info = -11;    } else if (ilz && *ldz < *n || *ldz < 1) {	*info = -13;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGGHRD", &i__1);	return 0;    }/*     Initialize Q and Z if desired. */    if (icompq == 3) {	dlaset_("Full", n, n, &c_b10, &c_b11, &q[q_offset], ldq);    }    if (icompz == 3) {	dlaset_("Full", n, n, &c_b10, &c_b11, &z__[z_offset], ldz);    }/*     Quick return if possible */    if (*n <= 1) {	return 0;    }/*     Zero out lower triangle of B */    i__1 = *n - 1;    for (jcol = 1; jcol <= i__1; ++jcol) {	i__2 = *n;	for (jrow = jcol + 1; jrow <= i__2; ++jrow) {	    b[jrow + jcol * b_dim1] = 0.;/* L10: */	}/* L20: */    }/*     Reduce A and B */    i__1 = *ihi - 2;    for (jcol = *ilo; jcol <= i__1; ++jcol) {	i__2 = jcol + 2;	for (jrow = *ihi; jrow >= i__2; --jrow) {/*           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */	    temp = a[jrow - 1 + jcol * a_dim1];	    dlartg_(&temp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 + 		    jcol * a_dim1]);	    a[jrow + jcol * a_dim1] = 0.;	    i__3 = *n - jcol;	    drot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (		    jcol + 1) * a_dim1], lda, &c__, &s);	    i__3 = *n + 2 - jrow;	    drot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (		    jrow - 1) * b_dim1], ldb, &c__, &s);	    if (ilq) {		drot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1 			+ 1], &c__1, &c__, &s);	    }/*           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */	    temp = b[jrow + jrow * b_dim1];	    dlartg_(&temp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow 		    + jrow * b_dim1]);	    b[jrow + (jrow - 1) * b_dim1] = 0.;	    drot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 + 		    1], &c__1, &c__, &s);	    i__3 = jrow - 1;	    drot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1 		    + 1], &c__1, &c__, &s);	    if (ilz) {		drot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) * 			z_dim1 + 1], &c__1, &c__, &s);	    }/* L30: */	}/* L40: */    }    return 0;/*     End of DGGHRD */} /* dgghrd_ */
 |