| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 | /* dggbak.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dggbak_(char *job, char *side, integer *n, integer *ilo, 	integer *ihi, doublereal *lscale, doublereal *rscale, integer *m, 	doublereal *v, integer *ldv, integer *info){    /* System generated locals */    integer v_dim1, v_offset, i__1;    /* Local variables */    integer i__, k;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    logical leftv;    extern /* Subroutine */ int xerbla_(char *, integer *);    logical rightv;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGBAK forms the right or left eigenvectors of a real generalized *//*  eigenvalue problem A*x = lambda*B*x, by backward transformation on *//*  the computed eigenvectors of the balanced pair of matrices output by *//*  DGGBAL. *//*  Arguments *//*  ========= *//*  JOB     (input) CHARACTER*1 *//*          Specifies the type of backward transformation required: *//*          = 'N':  do nothing, return immediately; *//*          = 'P':  do backward transformation for permutation only; *//*          = 'S':  do backward transformation for scaling only; *//*          = 'B':  do backward transformations for both permutation and *//*                  scaling. *//*          JOB must be the same as the argument JOB supplied to DGGBAL. *//*  SIDE    (input) CHARACTER*1 *//*          = 'R':  V contains right eigenvectors; *//*          = 'L':  V contains left eigenvectors. *//*  N       (input) INTEGER *//*          The number of rows of the matrix V.  N >= 0. *//*  ILO     (input) INTEGER *//*  IHI     (input) INTEGER *//*          The integers ILO and IHI determined by DGGBAL. *//*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. *//*  LSCALE  (input) DOUBLE PRECISION array, dimension (N) *//*          Details of the permutations and/or scaling factors applied *//*          to the left side of A and B, as returned by DGGBAL. *//*  RSCALE  (input) DOUBLE PRECISION array, dimension (N) *//*          Details of the permutations and/or scaling factors applied *//*          to the right side of A and B, as returned by DGGBAL. *//*  M       (input) INTEGER *//*          The number of columns of the matrix V.  M >= 0. *//*  V       (input/output) DOUBLE PRECISION array, dimension (LDV,M) *//*          On entry, the matrix of right or left eigenvectors to be *//*          transformed, as returned by DTGEVC. *//*          On exit, V is overwritten by the transformed eigenvectors. *//*  LDV     (input) INTEGER *//*          The leading dimension of the matrix V. LDV >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  See R.C. Ward, Balancing the generalized eigenvalue problem, *//*                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    --lscale;    --rscale;    v_dim1 = *ldv;    v_offset = 1 + v_dim1;    v -= v_offset;    /* Function Body */    rightv = lsame_(side, "R");    leftv = lsame_(side, "L");    *info = 0;    if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") 	    && ! lsame_(job, "B")) {	*info = -1;    } else if (! rightv && ! leftv) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ilo < 1) {	*info = -4;    } else if (*n == 0 && *ihi == 0 && *ilo != 1) {	*info = -4;    } else if (*n > 0 && (*ihi < *ilo || *ihi > max(1,*n))) {	*info = -5;    } else if (*n == 0 && *ilo == 1 && *ihi != 0) {	*info = -5;    } else if (*m < 0) {	*info = -8;    } else if (*ldv < max(1,*n)) {	*info = -10;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGGBAK", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*m == 0) {	return 0;    }    if (lsame_(job, "N")) {	return 0;    }    if (*ilo == *ihi) {	goto L30;    }/*     Backward balance */    if (lsame_(job, "S") || lsame_(job, "B")) {/*        Backward transformation on right eigenvectors */	if (rightv) {	    i__1 = *ihi;	    for (i__ = *ilo; i__ <= i__1; ++i__) {		dscal_(m, &rscale[i__], &v[i__ + v_dim1], ldv);/* L10: */	    }	}/*        Backward transformation on left eigenvectors */	if (leftv) {	    i__1 = *ihi;	    for (i__ = *ilo; i__ <= i__1; ++i__) {		dscal_(m, &lscale[i__], &v[i__ + v_dim1], ldv);/* L20: */	    }	}    }/*     Backward permutation */L30:    if (lsame_(job, "P") || lsame_(job, "B")) {/*        Backward permutation on right eigenvectors */	if (rightv) {	    if (*ilo == 1) {		goto L50;	    }	    for (i__ = *ilo - 1; i__ >= 1; --i__) {		k = (integer) rscale[i__];		if (k == i__) {		    goto L40;		}		dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);L40:		;	    }L50:	    if (*ihi == *n) {		goto L70;	    }	    i__1 = *n;	    for (i__ = *ihi + 1; i__ <= i__1; ++i__) {		k = (integer) rscale[i__];		if (k == i__) {		    goto L60;		}		dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);L60:		;	    }	}/*        Backward permutation on left eigenvectors */L70:	if (leftv) {	    if (*ilo == 1) {		goto L90;	    }	    for (i__ = *ilo - 1; i__ >= 1; --i__) {		k = (integer) lscale[i__];		if (k == i__) {		    goto L80;		}		dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);L80:		;	    }L90:	    if (*ihi == *n) {		goto L110;	    }	    i__1 = *n;	    for (i__ = *ihi + 1; i__ <= i__1; ++i__) {		k = (integer) lscale[i__];		if (k == i__) {		    goto L100;		}		dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);L100:		;	    }	}    }L110:    return 0;/*     End of DGGBAK */} /* dggbak_ */
 |