| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 | /* dgetc2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b10 = -1.;/* Subroutine */ int dgetc2_(integer *n, doublereal *a, integer *lda, integer 	*ipiv, integer *jpiv, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1;    /* Local variables */    integer i__, j, ip, jp;    doublereal eps;    integer ipv, jpv;    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal smin, xmax;    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dlabad_(doublereal *, doublereal *);    extern doublereal dlamch_(char *);    doublereal bignum, smlnum;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGETC2 computes an LU factorization with complete pivoting of the *//*  n-by-n matrix A. The factorization has the form A = P * L * U * Q, *//*  where P and Q are permutation matrices, L is lower triangular with *//*  unit diagonal elements and U is upper triangular. *//*  This is the Level 2 BLAS algorithm. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A. N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the n-by-n matrix A to be factored. *//*          On exit, the factors L and U from the factorization *//*          A = P*L*U*Q; the unit diagonal elements of L are not stored. *//*          If U(k, k) appears to be less than SMIN, U(k, k) is given the *//*          value of SMIN, i.e., giving a nonsingular perturbed system. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (output) INTEGER array, dimension(N). *//*          The pivot indices; for 1 <= i <= N, row i of the *//*          matrix has been interchanged with row IPIV(i). *//*  JPIV    (output) INTEGER array, dimension(N). *//*          The pivot indices; for 1 <= j <= N, column j of the *//*          matrix has been interchanged with column JPIV(j). *//*  INFO    (output) INTEGER *//*           = 0: successful exit *//*           > 0: if INFO = k, U(k, k) is likely to produce owerflow if *//*                we try to solve for x in Ax = b. So U is perturbed to *//*                avoid the overflow. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, *//*     Umea University, S-901 87 Umea, Sweden. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Set constants to control overflow */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    --jpiv;    /* Function Body */    *info = 0;    eps = dlamch_("P");    smlnum = dlamch_("S") / eps;    bignum = 1. / smlnum;    dlabad_(&smlnum, &bignum);/*     Factorize A using complete pivoting. *//*     Set pivots less than SMIN to SMIN. */    i__1 = *n - 1;    for (i__ = 1; i__ <= i__1; ++i__) {/*        Find max element in matrix A */	xmax = 0.;	i__2 = *n;	for (ip = i__; ip <= i__2; ++ip) {	    i__3 = *n;	    for (jp = i__; jp <= i__3; ++jp) {		if ((d__1 = a[ip + jp * a_dim1], abs(d__1)) >= xmax) {		    xmax = (d__1 = a[ip + jp * a_dim1], abs(d__1));		    ipv = ip;		    jpv = jp;		}/* L10: */	    }/* L20: */	}	if (i__ == 1) {/* Computing MAX */	    d__1 = eps * xmax;	    smin = max(d__1,smlnum);	}/*        Swap rows */	if (ipv != i__) {	    dswap_(n, &a[ipv + a_dim1], lda, &a[i__ + a_dim1], lda);	}	ipiv[i__] = ipv;/*        Swap columns */	if (jpv != i__) {	    dswap_(n, &a[jpv * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &		    c__1);	}	jpiv[i__] = jpv;/*        Check for singularity */	if ((d__1 = a[i__ + i__ * a_dim1], abs(d__1)) < smin) {	    *info = i__;	    a[i__ + i__ * a_dim1] = smin;	}	i__2 = *n;	for (j = i__ + 1; j <= i__2; ++j) {	    a[j + i__ * a_dim1] /= a[i__ + i__ * a_dim1];/* L30: */	}	i__2 = *n - i__;	i__3 = *n - i__;	dger_(&i__2, &i__3, &c_b10, &a[i__ + 1 + i__ * a_dim1], &c__1, &a[i__ 		+ (i__ + 1) * a_dim1], lda, &a[i__ + 1 + (i__ + 1) * a_dim1], 		lda);/* L40: */    }    if ((d__1 = a[*n + *n * a_dim1], abs(d__1)) < smin) {	*info = *n;	a[*n + *n * a_dim1] = smin;    }    return 0;/*     End of DGETC2 */} /* dgetc2_ */
 |