| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588 | /* dgesvx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dgesvx_(char *fact, char *trans, integer *n, integer *	nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 	integer *ipiv, char *equed, doublereal *r__, doublereal *c__, 	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *	iwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 	    x_offset, i__1, i__2;    doublereal d__1, d__2;    /* Local variables */    integer i__, j;    doublereal amax;    char norm[1];    extern logical lsame_(char *, char *);    doublereal rcmin, rcmax, anorm;    logical equil;    extern doublereal dlamch_(char *), dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int dlaqge_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, char *), dgecon_(char *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *);    doublereal colcnd;    logical nofact;    extern /* Subroutine */ int dgeequ_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, integer *), dgerfs_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, integer *), 	    dgetrf_(integer *, integer *, doublereal *, integer *, integer *, 	    integer *), dlacpy_(char *, integer *, integer *, doublereal *, 	    integer *, doublereal *, integer *), xerbla_(char *, 	    integer *);    doublereal bignum;    extern doublereal dlantr_(char *, char *, char *, integer *, integer *, 	    doublereal *, integer *, doublereal *);    integer infequ;    logical colequ;    extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    doublereal rowcnd;    logical notran;    doublereal smlnum;    logical rowequ;    doublereal rpvgrw;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGESVX uses the LU factorization to compute the solution to a real *//*  system of linear equations *//*     A * X = B, *//*  where A is an N-by-N matrix and X and B are N-by-NRHS matrices. *//*  Error bounds on the solution and a condition estimate are also *//*  provided. *//*  Description *//*  =========== *//*  The following steps are performed: *//*  1. If FACT = 'E', real scaling factors are computed to equilibrate *//*     the system: *//*        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B *//*        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B *//*        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B *//*     Whether or not the system will be equilibrated depends on the *//*     scaling of the matrix A, but if equilibration is used, A is *//*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') *//*     or diag(C)*B (if TRANS = 'T' or 'C'). *//*  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the *//*     matrix A (after equilibration if FACT = 'E') as *//*        A = P * L * U, *//*     where P is a permutation matrix, L is a unit lower triangular *//*     matrix, and U is upper triangular. *//*  3. If some U(i,i)=0, so that U is exactly singular, then the routine *//*     returns with INFO = i. Otherwise, the factored form of A is used *//*     to estimate the condition number of the matrix A.  If the *//*     reciprocal of the condition number is less than machine precision, *//*     INFO = N+1 is returned as a warning, but the routine still goes on *//*     to solve for X and compute error bounds as described below. *//*  4. The system of equations is solved for X using the factored form *//*     of A. *//*  5. Iterative refinement is applied to improve the computed solution *//*     matrix and calculate error bounds and backward error estimates *//*     for it. *//*  6. If equilibration was used, the matrix X is premultiplied by *//*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so *//*     that it solves the original system before equilibration. *//*  Arguments *//*  ========= *//*  FACT    (input) CHARACTER*1 *//*          Specifies whether or not the factored form of the matrix A is *//*          supplied on entry, and if not, whether the matrix A should be *//*          equilibrated before it is factored. *//*          = 'F':  On entry, AF and IPIV contain the factored form of A. *//*                  If EQUED is not 'N', the matrix A has been *//*                  equilibrated with scaling factors given by R and C. *//*                  A, AF, and IPIV are not modified. *//*          = 'N':  The matrix A will be copied to AF and factored. *//*          = 'E':  The matrix A will be equilibrated if necessary, then *//*                  copied to AF and factored. *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the form of the system of equations: *//*          = 'N':  A * X = B     (No transpose) *//*          = 'T':  A**T * X = B  (Transpose) *//*          = 'C':  A**H * X = B  (Transpose) *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrices B and X.  NRHS >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is *//*          not 'N', then A must have been equilibrated by the scaling *//*          factors in R and/or C.  A is not modified if FACT = 'F' or *//*          'N', or if FACT = 'E' and EQUED = 'N' on exit. *//*          On exit, if EQUED .ne. 'N', A is scaled as follows: *//*          EQUED = 'R':  A := diag(R) * A *//*          EQUED = 'C':  A := A * diag(C) *//*          EQUED = 'B':  A := diag(R) * A * diag(C). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) *//*          If FACT = 'F', then AF is an input argument and on entry *//*          contains the factors L and U from the factorization *//*          A = P*L*U as computed by DGETRF.  If EQUED .ne. 'N', then *//*          AF is the factored form of the equilibrated matrix A. *//*          If FACT = 'N', then AF is an output argument and on exit *//*          returns the factors L and U from the factorization A = P*L*U *//*          of the original matrix A. *//*          If FACT = 'E', then AF is an output argument and on exit *//*          returns the factors L and U from the factorization A = P*L*U *//*          of the equilibrated matrix A (see the description of A for *//*          the form of the equilibrated matrix). *//*  LDAF    (input) INTEGER *//*          The leading dimension of the array AF.  LDAF >= max(1,N). *//*  IPIV    (input or output) INTEGER array, dimension (N) *//*          If FACT = 'F', then IPIV is an input argument and on entry *//*          contains the pivot indices from the factorization A = P*L*U *//*          as computed by DGETRF; row i of the matrix was interchanged *//*          with row IPIV(i). *//*          If FACT = 'N', then IPIV is an output argument and on exit *//*          contains the pivot indices from the factorization A = P*L*U *//*          of the original matrix A. *//*          If FACT = 'E', then IPIV is an output argument and on exit *//*          contains the pivot indices from the factorization A = P*L*U *//*          of the equilibrated matrix A. *//*  EQUED   (input or output) CHARACTER*1 *//*          Specifies the form of equilibration that was done. *//*          = 'N':  No equilibration (always true if FACT = 'N'). *//*          = 'R':  Row equilibration, i.e., A has been premultiplied by *//*                  diag(R). *//*          = 'C':  Column equilibration, i.e., A has been postmultiplied *//*                  by diag(C). *//*          = 'B':  Both row and column equilibration, i.e., A has been *//*                  replaced by diag(R) * A * diag(C). *//*          EQUED is an input argument if FACT = 'F'; otherwise, it is an *//*          output argument. *//*  R       (input or output) DOUBLE PRECISION array, dimension (N) *//*          The row scale factors for A.  If EQUED = 'R' or 'B', A is *//*          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R *//*          is not accessed.  R is an input argument if FACT = 'F'; *//*          otherwise, R is an output argument.  If FACT = 'F' and *//*          EQUED = 'R' or 'B', each element of R must be positive. *//*  C       (input or output) DOUBLE PRECISION array, dimension (N) *//*          The column scale factors for A.  If EQUED = 'C' or 'B', A is *//*          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C *//*          is not accessed.  C is an input argument if FACT = 'F'; *//*          otherwise, C is an output argument.  If FACT = 'F' and *//*          EQUED = 'C' or 'B', each element of C must be positive. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N-by-NRHS right hand side matrix B. *//*          On exit, *//*          if EQUED = 'N', B is not modified; *//*          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by *//*          diag(R)*B; *//*          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is *//*          overwritten by diag(C)*B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X *//*          to the original system of equations.  Note that A and B are *//*          modified on exit if EQUED .ne. 'N', and the solution to the *//*          equilibrated system is inv(diag(C))*X if TRANS = 'N' and *//*          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' *//*          and EQUED = 'R' or 'B'. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(1,N). *//*  RCOND   (output) DOUBLE PRECISION *//*          The estimate of the reciprocal condition number of the matrix *//*          A after equilibration (if done).  If RCOND is less than the *//*          machine precision (in particular, if RCOND = 0), the matrix *//*          is singular to working precision.  This condition is *//*          indicated by a return code of INFO > 0. *//*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The estimated forward error bound for each solution vector *//*          X(j) (the j-th column of the solution matrix X). *//*          If XTRUE is the true solution corresponding to X(j), FERR(j) *//*          is an estimated upper bound for the magnitude of the largest *//*          element in (X(j) - XTRUE) divided by the magnitude of the *//*          largest element in X(j).  The estimate is as reliable as *//*          the estimate for RCOND, and is almost always a slight *//*          overestimate of the true error. *//*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The componentwise relative backward error of each solution *//*          vector X(j) (i.e., the smallest relative change in *//*          any element of A or B that makes X(j) an exact solution). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (4*N) *//*          On exit, WORK(1) contains the reciprocal pivot growth *//*          factor norm(A)/norm(U). The "max absolute element" norm is *//*          used. If WORK(1) is much less than 1, then the stability *//*          of the LU factorization of the (equilibrated) matrix A *//*          could be poor. This also means that the solution X, condition *//*          estimator RCOND, and forward error bound FERR could be *//*          unreliable. If factorization fails with 0<INFO<=N, then *//*          WORK(1) contains the reciprocal pivot growth factor for the *//*          leading INFO columns of A. *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, and i is *//*                <= N:  U(i,i) is exactly zero.  The factorization has *//*                       been completed, but the factor U is exactly *//*                       singular, so the solution and error bounds *//*                       could not be computed. RCOND = 0 is returned. *//*                = N+1: U is nonsingular, but RCOND is less than machine *//*                       precision, meaning that the matrix is singular *//*                       to working precision.  Nevertheless, the *//*                       solution and error bounds are computed because *//*                       there are a number of situations where the *//*                       computed solution can be more accurate than the *//*                       value of RCOND would suggest. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    af_dim1 = *ldaf;    af_offset = 1 + af_dim1;    af -= af_offset;    --ipiv;    --r__;    --c__;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --ferr;    --berr;    --work;    --iwork;    /* Function Body */    *info = 0;    nofact = lsame_(fact, "N");    equil = lsame_(fact, "E");    notran = lsame_(trans, "N");    if (nofact || equil) {	*(unsigned char *)equed = 'N';	rowequ = FALSE_;	colequ = FALSE_;    } else {	rowequ = lsame_(equed, "R") || lsame_(equed, 		"B");	colequ = lsame_(equed, "C") || lsame_(equed, 		"B");	smlnum = dlamch_("Safe minimum");	bignum = 1. / smlnum;    }/*     Test the input parameters. */    if (! nofact && ! equil && ! lsame_(fact, "F")) {	*info = -1;    } else if (! notran && ! lsame_(trans, "T") && ! 	    lsame_(trans, "C")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*lda < max(1,*n)) {	*info = -6;    } else if (*ldaf < max(1,*n)) {	*info = -8;    } else if (lsame_(fact, "F") && ! (rowequ || colequ 	    || lsame_(equed, "N"))) {	*info = -10;    } else {	if (rowequ) {	    rcmin = bignum;	    rcmax = 0.;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {/* Computing MIN */		d__1 = rcmin, d__2 = r__[j];		rcmin = min(d__1,d__2);/* Computing MAX */		d__1 = rcmax, d__2 = r__[j];		rcmax = max(d__1,d__2);/* L10: */	    }	    if (rcmin <= 0.) {		*info = -11;	    } else if (*n > 0) {		rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);	    } else {		rowcnd = 1.;	    }	}	if (colequ && *info == 0) {	    rcmin = bignum;	    rcmax = 0.;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {/* Computing MIN */		d__1 = rcmin, d__2 = c__[j];		rcmin = min(d__1,d__2);/* Computing MAX */		d__1 = rcmax, d__2 = c__[j];		rcmax = max(d__1,d__2);/* L20: */	    }	    if (rcmin <= 0.) {		*info = -12;	    } else if (*n > 0) {		colcnd = max(rcmin,smlnum) / min(rcmax,bignum);	    } else {		colcnd = 1.;	    }	}	if (*info == 0) {	    if (*ldb < max(1,*n)) {		*info = -14;	    } else if (*ldx < max(1,*n)) {		*info = -16;	    }	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGESVX", &i__1);	return 0;    }    if (equil) {/*        Compute row and column scalings to equilibrate the matrix A. */	dgeequ_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd, &		amax, &infequ);	if (infequ == 0) {/*           Equilibrate the matrix. */	    dlaqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &		    colcnd, &amax, equed);	    rowequ = lsame_(equed, "R") || lsame_(equed, 		     "B");	    colequ = lsame_(equed, "C") || lsame_(equed, 		     "B");	}    }/*     Scale the right hand side. */    if (notran) {	if (rowequ) {	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		i__2 = *n;		for (i__ = 1; i__ <= i__2; ++i__) {		    b[i__ + j * b_dim1] = r__[i__] * b[i__ + j * b_dim1];/* L30: */		}/* L40: */	    }	}    } else if (colequ) {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    i__2 = *n;	    for (i__ = 1; i__ <= i__2; ++i__) {		b[i__ + j * b_dim1] = c__[i__] * b[i__ + j * b_dim1];/* L50: */	    }/* L60: */	}    }    if (nofact || equil) {/*        Compute the LU factorization of A. */	dlacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);	dgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);/*        Return if INFO is non-zero. */	if (*info > 0) {/*           Compute the reciprocal pivot growth factor of the *//*           leading rank-deficient INFO columns of A. */	    rpvgrw = dlantr_("M", "U", "N", info, info, &af[af_offset], ldaf, 		    &work[1]);	    if (rpvgrw == 0.) {		rpvgrw = 1.;	    } else {		rpvgrw = dlange_("M", n, info, &a[a_offset], lda, &work[1]) / rpvgrw;	    }	    work[1] = rpvgrw;	    *rcond = 0.;	    return 0;	}    }/*     Compute the norm of the matrix A and the *//*     reciprocal pivot growth factor RPVGRW. */    if (notran) {	*(unsigned char *)norm = '1';    } else {	*(unsigned char *)norm = 'I';    }    anorm = dlange_(norm, n, n, &a[a_offset], lda, &work[1]);    rpvgrw = dlantr_("M", "U", "N", n, n, &af[af_offset], ldaf, &work[1]);    if (rpvgrw == 0.) {	rpvgrw = 1.;    } else {	rpvgrw = dlange_("M", n, n, &a[a_offset], lda, &work[1]) / 		rpvgrw;    }/*     Compute the reciprocal of the condition number of A. */    dgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1], 	     info);/*     Compute the solution matrix X. */    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    dgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, 	     info);/*     Use iterative refinement to improve the computed solution and *//*     compute error bounds and backward error estimates for it. */    dgerfs_(trans, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], 	     &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[	    1], &iwork[1], info);/*     Transform the solution matrix X to a solution of the original *//*     system. */    if (notran) {	if (colequ) {	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		i__2 = *n;		for (i__ = 1; i__ <= i__2; ++i__) {		    x[i__ + j * x_dim1] = c__[i__] * x[i__ + j * x_dim1];/* L70: */		}/* L80: */	    }	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		ferr[j] /= colcnd;/* L90: */	    }	}    } else if (rowequ) {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    i__2 = *n;	    for (i__ = 1; i__ <= i__2; ++i__) {		x[i__ + j * x_dim1] = r__[i__] * x[i__ + j * x_dim1];/* L100: */	    }/* L110: */	}	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    ferr[j] /= rowcnd;/* L120: */	}    }    work[1] = rpvgrw;/*     Set INFO = N+1 if the matrix is singular to working precision. */    if (*rcond < dlamch_("Epsilon")) {	*info = *n + 1;    }    return 0;/*     End of DGESVX */} /* dgesvx_ */
 |