| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 | 
							- /* dgerq2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dgerq2_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, doublereal *tau, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, k;
 
-     doublereal aii;
 
-     extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *), dlarfp_(integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGERQ2 computes an RQ factorization of a real m by n matrix A: */
 
- /*  A = R * Q. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the m by n matrix A. */
 
- /*          On exit, if m <= n, the upper triangle of the subarray */
 
- /*          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */
 
- /*          if m >= n, the elements on and above the (m-n)-th subdiagonal */
 
- /*          contain the m by n upper trapezoidal matrix R; the remaining */
 
- /*          elements, with the array TAU, represent the orthogonal matrix */
 
- /*          Q as a product of elementary reflectors (see Further */
 
- /*          Details). */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors (see Further */
 
- /*          Details). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrix Q is represented as a product of elementary reflectors */
 
- /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
 
- /*  A(m-k+i,1:n-k+i-1), and tau in TAU(i). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGERQ2", &i__1);
 
- 	return 0;
 
-     }
 
-     k = min(*m,*n);
 
-     for (i__ = k; i__ >= 1; --i__) {
 
- /*        Generate elementary reflector H(i) to annihilate */
 
- /*        A(m-k+i,1:n-k+i-1) */
 
- 	i__1 = *n - k + i__;
 
- 	dlarfp_(&i__1, &a[*m - k + i__ + (*n - k + i__) * a_dim1], &a[*m - k 
 
- 		+ i__ + a_dim1], lda, &tau[i__]);
 
- /*        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */
 
- 	aii = a[*m - k + i__ + (*n - k + i__) * a_dim1];
 
- 	a[*m - k + i__ + (*n - k + i__) * a_dim1] = 1.;
 
- 	i__1 = *m - k + i__ - 1;
 
- 	i__2 = *n - k + i__;
 
- 	dlarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[
 
- 		i__], &a[a_offset], lda, &work[1]);
 
- 	a[*m - k + i__ + (*n - k + i__) * a_dim1] = aii;
 
- /* L10: */
 
-     }
 
-     return 0;
 
- /*     End of DGERQ2 */
 
- } /* dgerq2_ */
 
 
  |