| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 | /* dgeqrf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;/* Subroutine */ int dgeqrf_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *tau, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, k, ib, nb, nx, iws, nbmin, iinfo;    extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *), dlarfb_(char *, 	     char *, char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ldwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEQRF computes a QR factorization of a real M-by-N matrix A: *//*  A = Q * R. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, the elements on and above the diagonal of the array *//*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is *//*          upper triangular if m >= n); the elements below the diagonal, *//*          with the array TAU, represent the orthogonal matrix Q as a *//*          product of min(m,n) elementary reflectors (see Further *//*          Details). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,N). *//*          For optimum performance LWORK >= N*NB, where NB is *//*          the optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(1) H(2) . . . H(k), where k = min(m,n). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), *//*  and tau in TAU(i). *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);    lwkopt = *n * nb;    work[1] = (doublereal) lwkopt;    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    } else if (*lwork < max(1,*n) && ! lquery) {	*info = -7;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGEQRF", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    k = min(*m,*n);    if (k == 0) {	work[1] = 1.;	return 0;    }    nbmin = 2;    nx = 0;    iws = *n;    if (nb > 1 && nb < k) {/*        Determine when to cross over from blocked to unblocked code. *//* Computing MAX */	i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1);	nx = max(i__1,i__2);	if (nx < k) {/*           Determine if workspace is large enough for blocked code. */	    ldwork = *n;	    iws = ldwork * nb;	    if (*lwork < iws) {/*              Not enough workspace to use optimal NB:  reduce NB and *//*              determine the minimum value of NB. */		nb = *lwork / ldwork;/* Computing MAX */		i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &			c_n1);		nbmin = max(i__1,i__2);	    }	}    }    if (nb >= nbmin && nb < k && nx < k) {/*        Use blocked code initially */	i__1 = k - nx;	i__2 = nb;	for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {/* Computing MIN */	    i__3 = k - i__ + 1;	    ib = min(i__3,nb);/*           Compute the QR factorization of the current block *//*           A(i:m,i:i+ib-1) */	    i__3 = *m - i__ + 1;	    dgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[		    1], &iinfo);	    if (i__ + ib <= *n) {/*              Form the triangular factor of the block reflector *//*              H = H(i) H(i+1) . . . H(i+ib-1) */		i__3 = *m - i__ + 1;		dlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ * 			a_dim1], lda, &tau[i__], &work[1], &ldwork);/*              Apply H' to A(i:m,i+ib:n) from the left */		i__3 = *m - i__ + 1;		i__4 = *n - i__ - ib + 1;		dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &			i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &			ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib 			+ 1], &ldwork);	    }/* L10: */	}    } else {	i__ = 1;    }/*     Use unblocked code to factor the last or only block. */    if (i__ <= k) {	i__2 = *m - i__ + 1;	i__1 = *n - i__ + 1;	dgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1], &iinfo);    }    work[1] = (doublereal) iws;    return 0;/*     End of DGEQRF */} /* dgeqrf_ */
 |