| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219 | /* dgejsv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b34 = 0.;static doublereal c_b35 = 1.;static integer c__0 = 0;static integer c_n1 = -1;/* Subroutine */ int dgejsv_(char *joba, char *jobu, char *jobv, char *jobr, 	char *jobt, char *jobp, integer *m, integer *n, doublereal *a, 	integer *lda, doublereal *sva, doublereal *u, integer *ldu, 	doublereal *v, integer *ldv, doublereal *work, integer *lwork, 	integer *iwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, 	    i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10;    doublereal d__1, d__2, d__3, d__4;    /* Builtin functions */    double sqrt(doublereal), log(doublereal), d_sign(doublereal *, doublereal 	    *);    integer i_dnnt(doublereal *);    /* Local variables */    integer p, q, n1, nr;    doublereal big, xsc, big1;    logical defr;    doublereal aapp, aaqq;    logical kill;    integer ierr;    extern doublereal dnrm2_(integer *, doublereal *, integer *);    doublereal temp1;    logical jracc;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    doublereal small, entra, sfmin;    logical lsvec;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    doublereal epsln;    logical rsvec;    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    logical l2aber;    extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    integer *);    doublereal condr1, condr2, uscal1, uscal2;    logical l2kill, l2rank, l2tran, l2pert;    extern doublereal dlamch_(char *);    extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *);    extern integer idamax_(integer *, doublereal *, integer *);    doublereal scalem;    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *);    doublereal sconda;    logical goscal;    doublereal aatmin;    extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *);    doublereal aatmax;    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *), xerbla_(char *, integer *);    logical noscal;    extern /* Subroutine */ int dpocon_(char *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 	    integer *), dgesvj_(char *, char *, char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *), dlassq_(integer *, doublereal *, integer 	    *, doublereal *, doublereal *), dlaswp_(integer *, doublereal *, 	    integer *, integer *, integer *, integer *, integer *);    doublereal entrat;    logical almort;    extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *), dormlq_(char *, char *, integer *, integer *, integer 	    *, doublereal *, integer *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *, integer *);    doublereal maxprj;    logical errest;    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    logical transp, rowpiv;    doublereal cond_ok__;    integer warning, numrank;/*  -- LAPACK routine (version 3.2)                                    -- *//*  -- Contributed by Zlatko Drmac of the University of Zagreb and     -- *//*  -- Kresimir Veselic of the Fernuniversitaet Hagen                  -- *//*  -- November 2008                                                   -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//* This routine is also part of SIGMA (version 1.23, October 23. 2008.) *//* SIGMA is a library of algorithms for highly accurate algorithms for *//* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the *//* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0. *//*     -#- Scalar Arguments -#- *//*     -#- Array Arguments -#- *//*     .. *//*  Purpose *//*  ~~~~~~~ *//*  DGEJSV computes the singular value decomposition (SVD) of a real M-by-N *//*  matrix [A], where M >= N. The SVD of [A] is written as *//*               [A] = [U] * [SIGMA] * [V]^t, *//*  where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N *//*  diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and *//*  [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are *//*  the singular values of [A]. The columns of [U] and [V] are the left and *//*  the right singular vectors of [A], respectively. The matrices [U] and [V] *//*  are computed and stored in the arrays U and V, respectively. The diagonal *//*  of [SIGMA] is computed and stored in the array SVA. *//*  Further details *//*  ~~~~~~~~~~~~~~~ *//*  DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses SGEQP3, *//*  SGEQRF, and SGELQF as preprocessors and preconditioners. Optionally, an *//*  additional row pivoting can be used as a preprocessor, which in some *//*  cases results in much higher accuracy. An example is matrix A with the *//*  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned *//*  diagonal matrices and C is well-conditioned matrix. In that case, complete *//*  pivoting in the first QR factorizations provides accuracy dependent on the *//*  condition number of C, and independent of D1, D2. Such higher accuracy is *//*  not completely understood theoretically, but it works well in practice. *//*  Further, if A can be written as A = B*D, with well-conditioned B and some *//*  diagonal D, then the high accuracy is guaranteed, both theoretically and *//*  in software, independent of D. For more details see [1], [2]. *//*     The computational range for the singular values can be the full range *//*  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS *//*  & LAPACK routines called by DGEJSV are implemented to work in that range. *//*  If that is not the case, then the restriction for safe computation with *//*  the singular values in the range of normalized IEEE numbers is that the *//*  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not *//*  overflow. This code (DGEJSV) is best used in this restricted range, *//*  meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are *//*  returned as zeros. See JOBR for details on this. *//*     Further, this implementation is somewhat slower than the one described *//*  in [1,2] due to replacement of some non-LAPACK components, and because *//*  the choice of some tuning parameters in the iterative part (DGESVJ) is *//*  left to the implementer on a particular machine. *//*     The rank revealing QR factorization (in this code: SGEQP3) should be *//*  implemented as in [3]. We have a new version of SGEQP3 under development *//*  that is more robust than the current one in LAPACK, with a cleaner cut in *//*  rank defficient cases. It will be available in the SIGMA library [4]. *//*  If M is much larger than N, it is obvious that the inital QRF with *//*  column pivoting can be preprocessed by the QRF without pivoting. That *//*  well known trick is not used in DGEJSV because in some cases heavy row *//*  weighting can be treated with complete pivoting. The overhead in cases *//*  M much larger than N is then only due to pivoting, but the benefits in *//*  terms of accuracy have prevailed. The implementer/user can incorporate *//*  this extra QRF step easily. The implementer can also improve data movement *//*  (matrix transpose, matrix copy, matrix transposed copy) - this *//*  implementation of DGEJSV uses only the simplest, naive data movement. *//*  Contributors *//*  ~~~~~~~~~~~~ *//*  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) *//*  References *//*  ~~~~~~~~~~ *//* [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. *//*     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. *//*     LAPACK Working note 169. *//* [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. *//*     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. *//*     LAPACK Working note 170. *//* [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR *//*     factorization software - a case study. *//*     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. *//*     LAPACK Working note 176. *//* [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, *//*     QSVD, (H,K)-SVD computations. *//*     Department of Mathematics, University of Zagreb, 2008. *//*  Bugs, examples and comments *//*  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ *//*  Please report all bugs and send interesting examples and/or comments to *//*  drmac@math.hr. Thank you. *//*  Arguments *//*  ~~~~~~~~~ *//* ............................................................................ *//* . JOBA   (input) CHARACTER*1 *//* .        Specifies the level of accuracy: *//* .      = 'C': This option works well (high relative accuracy) if A = B * D, *//* .             with well-conditioned B and arbitrary diagonal matrix D. *//* .             The accuracy cannot be spoiled by COLUMN scaling. The *//* .             accuracy of the computed output depends on the condition of *//* .             B, and the procedure aims at the best theoretical accuracy. *//* .             The relative error max_{i=1:N}|d sigma_i| / sigma_i is *//* .             bounded by f(M,N)*epsilon* cond(B), independent of D. *//* .             The input matrix is preprocessed with the QRF with column *//* .             pivoting. This initial preprocessing and preconditioning by *//* .             a rank revealing QR factorization is common for all values of *//* .             JOBA. Additional actions are specified as follows: *//* .      = 'E': Computation as with 'C' with an additional estimate of the *//* .             condition number of B. It provides a realistic error bound. *//* .      = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings *//* .             D1, D2, and well-conditioned matrix C, this option gives *//* .             higher accuracy than the 'C' option. If the structure of the *//* .             input matrix is not known, and relative accuracy is *//* .             desirable, then this option is advisable. The input matrix A *//* .             is preprocessed with QR factorization with FULL (row and *//* .             column) pivoting. *//* .      = 'G'  Computation as with 'F' with an additional estimate of the *//* .             condition number of B, where A=D*B. If A has heavily weighted *//* .             rows, then using this condition number gives too pessimistic *//* .             error bound. *//* .      = 'A': Small singular values are the noise and the matrix is treated *//* .             as numerically rank defficient. The error in the computed *//* .             singular values is bounded by f(m,n)*epsilon*||A||. *//* .             The computed SVD A = U * S * V^t restores A up to *//* .             f(m,n)*epsilon*||A||. *//* .             This gives the procedure the licence to discard (set to zero) *//* .             all singular values below N*epsilon*||A||. *//* .      = 'R': Similar as in 'A'. Rank revealing property of the initial *//* .             QR factorization is used do reveal (using triangular factor) *//* .             a gap sigma_{r+1} < epsilon * sigma_r in which case the *//* .             numerical RANK is declared to be r. The SVD is computed with *//* .             absolute error bounds, but more accurately than with 'A'. *//* . *//* . JOBU   (input) CHARACTER*1 *//* .        Specifies whether to compute the columns of U: *//* .      = 'U': N columns of U are returned in the array U. *//* .      = 'F': full set of M left sing. vectors is returned in the array U. *//* .      = 'W': U may be used as workspace of length M*N. See the description *//* .             of U. *//* .      = 'N': U is not computed. *//* . *//* . JOBV   (input) CHARACTER*1 *//* .        Specifies whether to compute the matrix V: *//* .      = 'V': N columns of V are returned in the array V; Jacobi rotations *//* .             are not explicitly accumulated. *//* .      = 'J': N columns of V are returned in the array V, but they are *//* .             computed as the product of Jacobi rotations. This option is *//* .             allowed only if JOBU .NE. 'N', i.e. in computing the full SVD. *//* .      = 'W': V may be used as workspace of length N*N. See the description *//* .             of V. *//* .      = 'N': V is not computed. *//* . *//* . JOBR   (input) CHARACTER*1 *//* .        Specifies the RANGE for the singular values. Issues the licence to *//* .        set to zero small positive singular values if they are outside *//* .        specified range. If A .NE. 0 is scaled so that the largest singular *//* .        value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues *//* .        the licence to kill columns of A whose norm in c*A is less than *//* .        DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN, *//* .        where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). *//* .      = 'N': Do not kill small columns of c*A. This option assumes that *//* .             BLAS and QR factorizations and triangular solvers are *//* .             implemented to work in that range. If the condition of A *//* .             is greater than BIG, use DGESVJ. *//* .      = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)] *//* .             (roughly, as described above). This option is recommended. *//* .                                            ~~~~~~~~~~~~~~~~~~~~~~~~~~~ *//* .        For computing the singular values in the FULL range [SFMIN,BIG] *//* .        use DGESVJ. *//* . *//* . JOBT   (input) CHARACTER*1 *//* .        If the matrix is square then the procedure may determine to use *//* .        transposed A if A^t seems to be better with respect to convergence. *//* .        If the matrix is not square, JOBT is ignored. This is subject to *//* .        changes in the future. *//* .        The decision is based on two values of entropy over the adjoint *//* .        orbit of A^t * A. See the descriptions of WORK(6) and WORK(7). *//* .      = 'T': transpose if entropy test indicates possibly faster *//* .        convergence of Jacobi process if A^t is taken as input. If A is *//* .        replaced with A^t, then the row pivoting is included automatically. *//* .      = 'N': do not speculate. *//* .        This option can be used to compute only the singular values, or the *//* .        full SVD (U, SIGMA and V). For only one set of singular vectors *//* .        (U or V), the caller should provide both U and V, as one of the *//* .        matrices is used as workspace if the matrix A is transposed. *//* .        The implementer can easily remove this constraint and make the *//* .        code more complicated. See the descriptions of U and V. *//* . *//* . JOBP   (input) CHARACTER*1 *//* .        Issues the licence to introduce structured perturbations to drown *//* .        denormalized numbers. This licence should be active if the *//* .        denormals are poorly implemented, causing slow computation, *//* .        especially in cases of fast convergence (!). For details see [1,2]. *//* .        For the sake of simplicity, this perturbations are included only *//* .        when the full SVD or only the singular values are requested. The *//* .        implementer/user can easily add the perturbation for the cases of *//* .        computing one set of singular vectors. *//* .      = 'P': introduce perturbation *//* .      = 'N': do not perturb *//* ............................................................................ *//*  M      (input) INTEGER *//*         The number of rows of the input matrix A.  M >= 0. *//*  N      (input) INTEGER *//*         The number of columns of the input matrix A. M >= N >= 0. *//*  A       (input/workspace) REAL array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  SVA     (workspace/output) REAL array, dimension (N) *//*          On exit, *//*          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the *//*            computation SVA contains Euclidean column norms of the *//*            iterated matrices in the array A. *//*          - For WORK(1) .NE. WORK(2): The singular values of A are *//*            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if *//*            sigma_max(A) overflows or if small singular values have been *//*            saved from underflow by scaling the input matrix A. *//*          - If JOBR='R' then some of the singular values may be returned *//*            as exact zeros obtained by "set to zero" because they are *//*            below the numerical rank threshold or are denormalized numbers. *//*  U       (workspace/output) REAL array, dimension ( LDU, N ) *//*          If JOBU = 'U', then U contains on exit the M-by-N matrix of *//*                         the left singular vectors. *//*          If JOBU = 'F', then U contains on exit the M-by-M matrix of *//*                         the left singular vectors, including an ONB *//*                         of the orthogonal complement of the Range(A). *//*          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N), *//*                         then U is used as workspace if the procedure *//*                         replaces A with A^t. In that case, [V] is computed *//*                         in U as left singular vectors of A^t and then *//*                         copied back to the V array. This 'W' option is just *//*                         a reminder to the caller that in this case U is *//*                         reserved as workspace of length N*N. *//*          If JOBU = 'N'  U is not referenced. *//* LDU      (input) INTEGER *//*          The leading dimension of the array U,  LDU >= 1. *//*          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M. *//*  V       (workspace/output) REAL array, dimension ( LDV, N ) *//*          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of *//*                         the right singular vectors; *//*          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N), *//*                         then V is used as workspace if the pprocedure *//*                         replaces A with A^t. In that case, [U] is computed *//*                         in V as right singular vectors of A^t and then *//*                         copied back to the U array. This 'W' option is just *//*                         a reminder to the caller that in this case V is *//*                         reserved as workspace of length N*N. *//*          If JOBV = 'N'  V is not referenced. *//*  LDV     (input) INTEGER *//*          The leading dimension of the array V,  LDV >= 1. *//*          If JOBV = 'V' or 'J' or 'W', then LDV >= N. *//*  WORK    (workspace/output) REAL array, dimension at least LWORK. *//*          On exit, *//*          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such *//*                    that SCALE*SVA(1:N) are the computed singular values *//*                    of A. (See the description of SVA().) *//*          WORK(2) = See the description of WORK(1). *//*          WORK(3) = SCONDA is an estimate for the condition number of *//*                    column equilibrated A. (If JOBA .EQ. 'E' or 'G') *//*                    SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). *//*                    It is computed using DPOCON. It holds *//*                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA *//*                    where R is the triangular factor from the QRF of A. *//*                    However, if R is truncated and the numerical rank is *//*                    determined to be strictly smaller than N, SCONDA is *//*                    returned as -1, thus indicating that the smallest *//*                    singular values might be lost. *//*          If full SVD is needed, the following two condition numbers are *//*          useful for the analysis of the algorithm. They are provied for *//*          a developer/implementer who is familiar with the details of *//*          the method. *//*          WORK(4) = an estimate of the scaled condition number of the *//*                    triangular factor in the first QR factorization. *//*          WORK(5) = an estimate of the scaled condition number of the *//*                    triangular factor in the second QR factorization. *//*          The following two parameters are computed if JOBT .EQ. 'T'. *//*          They are provided for a developer/implementer who is familiar *//*          with the details of the method. *//*          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy *//*                    of diag(A^t*A) / Trace(A^t*A) taken as point in the *//*                    probability simplex. *//*          WORK(7) = the entropy of A*A^t. *//*  LWORK   (input) INTEGER *//*          Length of WORK to confirm proper allocation of work space. *//*          LWORK depends on the job: *//*          If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and *//*            -> .. no scaled condition estimate required ( JOBE.EQ.'N'): *//*               LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement. *//*               For optimal performance (blocked code) the optimal value *//*               is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal *//*               block size for xGEQP3/xGEQRF. *//*            -> .. an estimate of the scaled condition number of A is *//*               required (JOBA='E', 'G'). In this case, LWORK is the maximum *//*               of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4N,7). *//*          If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'), *//*            -> the minimal requirement is LWORK >= max(2*N+M,7). *//*            -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7), *//*               where NB is the optimal block size. *//*          If SIGMA and the left singular vectors are needed *//*            -> the minimal requirement is LWORK >= max(2*N+M,7). *//*            -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7), *//*               where NB is the optimal block size. *//*          If full SVD is needed ( JOBU.EQ.'U' or 'F', JOBV.EQ.'V' ) and *//*            -> .. the singular vectors are computed without explicit *//*               accumulation of the Jacobi rotations, LWORK >= 6*N+2*N*N *//*            -> .. in the iterative part, the Jacobi rotations are *//*               explicitly accumulated (option, see the description of JOBV), *//*               then the minimal requirement is LWORK >= max(M+3*N+N*N,7). *//*               For better performance, if NB is the optimal block size, *//*               LWORK >= max(3*N+N*N+M,3*N+N*N+N*NB,7). *//*  IWORK   (workspace/output) INTEGER array, dimension M+3*N. *//*          On exit, *//*          IWORK(1) = the numerical rank determined after the initial *//*                     QR factorization with pivoting. See the descriptions *//*                     of JOBA and JOBR. *//*          IWORK(2) = the number of the computed nonzero singular values *//*          IWORK(3) = if nonzero, a warning message: *//*                     If IWORK(3).EQ.1 then some of the column norms of A *//*                     were denormalized floats. The requested high accuracy *//*                     is not warranted by the data. *//*  INFO    (output) INTEGER *//*           < 0  : if INFO = -i, then the i-th argument had an illegal value. *//*           = 0 :  successfull exit; *//*           > 0 :  DGEJSV  did not converge in the maximal allowed number *//*                  of sweeps. The computed values may be inaccurate. *//* ............................................................................ *//*     Local Parameters: *//*     Local Scalars: *//*     Intrinsic Functions: *//*     External Functions: *//*     External Subroutines ( BLAS, LAPACK ): *//* ............................................................................ *//*     Test the input arguments */    /* Parameter adjustments */    --sva;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    v_dim1 = *ldv;    v_offset = 1 + v_dim1;    v -= v_offset;    --work;    --iwork;    /* Function Body */    lsvec = lsame_(jobu, "U") || lsame_(jobu, "F");    jracc = lsame_(jobv, "J");    rsvec = lsame_(jobv, "V") || jracc;    rowpiv = lsame_(joba, "F") || lsame_(joba, "G");    l2rank = lsame_(joba, "R");    l2aber = lsame_(joba, "A");    errest = lsame_(joba, "E") || lsame_(joba, "G");    l2tran = lsame_(jobt, "T");    l2kill = lsame_(jobr, "R");    defr = lsame_(jobr, "N");    l2pert = lsame_(jobp, "P");    if (! (rowpiv || l2rank || l2aber || errest || lsame_(joba, "C"))) {	*info = -1;    } else if (! (lsvec || lsame_(jobu, "N") || lsame_(	    jobu, "W"))) {	*info = -2;    } else if (! (rsvec || lsame_(jobv, "N") || lsame_(	    jobv, "W")) || jracc && ! lsvec) {	*info = -3;    } else if (! (l2kill || defr)) {	*info = -4;    } else if (! (l2tran || lsame_(jobt, "N"))) {	*info = -5;    } else if (! (l2pert || lsame_(jobp, "N"))) {	*info = -6;    } else if (*m < 0) {	*info = -7;    } else if (*n < 0 || *n > *m) {	*info = -8;    } else if (*lda < *m) {	*info = -10;    } else if (lsvec && *ldu < *m) {	*info = -13;    } else if (rsvec && *ldv < *n) {	*info = -14;    } else /* if(complicated condition) */ {/* Computing MAX */	i__1 = 7, i__2 = (*n << 2) + 1, i__1 = max(i__1,i__2), i__2 = (*m << 		1) + *n;/* Computing MAX */	i__3 = 7, i__4 = (*n << 2) + *n * *n, i__3 = max(i__3,i__4), i__4 = (*		m << 1) + *n;/* Computing MAX */	i__5 = 7, i__6 = (*n << 1) + *m;/* Computing MAX */	i__7 = 7, i__8 = (*n << 1) + *m;/* Computing MAX */	i__9 = 7, i__10 = *m + *n * 3 + *n * *n;	if (! (lsvec || rsvec || errest) && *lwork < max(i__1,i__2) || ! (		lsvec || lsvec) && errest && *lwork < max(i__3,i__4) || lsvec 		&& ! rsvec && *lwork < max(i__5,i__6) || rsvec && ! lsvec && *		lwork < max(i__7,i__8) || lsvec && rsvec && ! jracc && *lwork 		< *n * 6 + (*n << 1) * *n || lsvec && rsvec && jracc && *		lwork < max(i__9,i__10)) {	    *info = -17;	} else {/*        #:) */	    *info = 0;	}    }    if (*info != 0) {/*       #:( */	i__1 = -(*info);	xerbla_("DGEJSV", &i__1);    }/*     Quick return for void matrix (Y3K safe) *//* #:) */    if (*m == 0 || *n == 0) {	return 0;    }/*     Determine whether the matrix U should be M x N or M x M */    if (lsvec) {	n1 = *n;	if (lsame_(jobu, "F")) {	    n1 = *m;	}    }/*     Set numerical parameters *//* !    NOTE: Make sure DLAMCH() does not fail on the target architecture. */    epsln = dlamch_("Epsilon");    sfmin = dlamch_("SafeMinimum");    small = sfmin / epsln;    big = dlamch_("O");/*     BIG   = ONE / SFMIN *//*     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N *//* (!)  If necessary, scale SVA() to protect the largest norm from *//*     overflow. It is possible that this scaling pushes the smallest *//*     column norm left from the underflow threshold (extreme case). */    scalem = 1. / sqrt((doublereal) (*m) * (doublereal) (*n));    noscal = TRUE_;    goscal = TRUE_;    i__1 = *n;    for (p = 1; p <= i__1; ++p) {	aapp = 0.;	aaqq = 0.;	dlassq_(m, &a[p * a_dim1 + 1], &c__1, &aapp, &aaqq);	if (aapp > big) {	    *info = -9;	    i__2 = -(*info);	    xerbla_("DGEJSV", &i__2);	    return 0;	}	aaqq = sqrt(aaqq);	if (aapp < big / aaqq && noscal) {	    sva[p] = aapp * aaqq;	} else {	    noscal = FALSE_;	    sva[p] = aapp * (aaqq * scalem);	    if (goscal) {		goscal = FALSE_;		i__2 = p - 1;		dscal_(&i__2, &scalem, &sva[1], &c__1);	    }	}/* L1874: */    }    if (noscal) {	scalem = 1.;    }    aapp = 0.;    aaqq = big;    i__1 = *n;    for (p = 1; p <= i__1; ++p) {/* Computing MAX */	d__1 = aapp, d__2 = sva[p];	aapp = max(d__1,d__2);	if (sva[p] != 0.) {/* Computing MIN */	    d__1 = aaqq, d__2 = sva[p];	    aaqq = min(d__1,d__2);	}/* L4781: */    }/*     Quick return for zero M x N matrix *//* #:) */    if (aapp == 0.) {	if (lsvec) {	    dlaset_("G", m, &n1, &c_b34, &c_b35, &u[u_offset], ldu)		    ;	}	if (rsvec) {	    dlaset_("G", n, n, &c_b34, &c_b35, &v[v_offset], ldv);	}	work[1] = 1.;	work[2] = 1.;	if (errest) {	    work[3] = 1.;	}	if (lsvec && rsvec) {	    work[4] = 1.;	    work[5] = 1.;	}	if (l2tran) {	    work[6] = 0.;	    work[7] = 0.;	}	iwork[1] = 0;	iwork[2] = 0;	return 0;    }/*     Issue warning if denormalized column norms detected. Override the *//*     high relative accuracy request. Issue licence to kill columns *//*     (set them to zero) whose norm is less than sigma_max / BIG (roughly). *//* #:( */    warning = 0;    if (aaqq <= sfmin) {	l2rank = TRUE_;	l2kill = TRUE_;	warning = 1;    }/*     Quick return for one-column matrix *//* #:) */    if (*n == 1) {	if (lsvec) {	    dlascl_("G", &c__0, &c__0, &sva[1], &scalem, m, &c__1, &a[a_dim1 		    + 1], lda, &ierr);	    dlacpy_("A", m, &c__1, &a[a_offset], lda, &u[u_offset], ldu);/*           computing all M left singular vectors of the M x 1 matrix */	    if (n1 != *n) {		i__1 = *lwork - *n;		dgeqrf_(m, n, &u[u_offset], ldu, &work[1], &work[*n + 1], &			i__1, &ierr);		i__1 = *lwork - *n;		dorgqr_(m, &n1, &c__1, &u[u_offset], ldu, &work[1], &work[*n 			+ 1], &i__1, &ierr);		dcopy_(m, &a[a_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);	    }	}	if (rsvec) {	    v[v_dim1 + 1] = 1.;	}	if (sva[1] < big * scalem) {	    sva[1] /= scalem;	    scalem = 1.;	}	work[1] = 1. / scalem;	work[2] = 1.;	if (sva[1] != 0.) {	    iwork[1] = 1;	    if (sva[1] / scalem >= sfmin) {		iwork[2] = 1;	    } else {		iwork[2] = 0;	    }	} else {	    iwork[1] = 0;	    iwork[2] = 0;	}	if (errest) {	    work[3] = 1.;	}	if (lsvec && rsvec) {	    work[4] = 1.;	    work[5] = 1.;	}	if (l2tran) {	    work[6] = 0.;	    work[7] = 0.;	}	return 0;    }    transp = FALSE_;    l2tran = l2tran && *m == *n;    aatmax = -1.;    aatmin = big;    if (rowpiv || l2tran) {/*     Compute the row norms, needed to determine row pivoting sequence *//*     (in the case of heavily row weighted A, row pivoting is strongly *//*     advised) and to collect information needed to compare the *//*     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.). */	if (l2tran) {	    i__1 = *m;	    for (p = 1; p <= i__1; ++p) {		xsc = 0.;		temp1 = 0.;		dlassq_(n, &a[p + a_dim1], lda, &xsc, &temp1);/*              DLASSQ gets both the ell_2 and the ell_infinity norm *//*              in one pass through the vector */		work[*m + *n + p] = xsc * scalem;		work[*n + p] = xsc * (scalem * sqrt(temp1));/* Computing MAX */		d__1 = aatmax, d__2 = work[*n + p];		aatmax = max(d__1,d__2);		if (work[*n + p] != 0.) {/* Computing MIN */		    d__1 = aatmin, d__2 = work[*n + p];		    aatmin = min(d__1,d__2);		}/* L1950: */	    }	} else {	    i__1 = *m;	    for (p = 1; p <= i__1; ++p) {		work[*m + *n + p] = scalem * (d__1 = a[p + idamax_(n, &a[p + 			a_dim1], lda) * a_dim1], abs(d__1));/* Computing MAX */		d__1 = aatmax, d__2 = work[*m + *n + p];		aatmax = max(d__1,d__2);/* Computing MIN */		d__1 = aatmin, d__2 = work[*m + *n + p];		aatmin = min(d__1,d__2);/* L1904: */	    }	}    }/*     For square matrix A try to determine whether A^t  would be  better *//*     input for the preconditioned Jacobi SVD, with faster convergence. *//*     The decision is based on an O(N) function of the vector of column *//*     and row norms of A, based on the Shannon entropy. This should give *//*     the right choice in most cases when the difference actually matters. *//*     It may fail and pick the slower converging side. */    entra = 0.;    entrat = 0.;    if (l2tran) {	xsc = 0.;	temp1 = 0.;	dlassq_(n, &sva[1], &c__1, &xsc, &temp1);	temp1 = 1. / temp1;	entra = 0.;	i__1 = *n;	for (p = 1; p <= i__1; ++p) {/* Computing 2nd power */	    d__1 = sva[p] / xsc;	    big1 = d__1 * d__1 * temp1;	    if (big1 != 0.) {		entra += big1 * log(big1);	    }/* L1113: */	}	entra = -entra / log((doublereal) (*n));/*        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex. *//*        It is derived from the diagonal of  A^t * A.  Do the same with the *//*        diagonal of A * A^t, compute the entropy of the corresponding *//*        probability distribution. Note that A * A^t and A^t * A have the *//*        same trace. */	entrat = 0.;	i__1 = *n + *m;	for (p = *n + 1; p <= i__1; ++p) {/* Computing 2nd power */	    d__1 = work[p] / xsc;	    big1 = d__1 * d__1 * temp1;	    if (big1 != 0.) {		entrat += big1 * log(big1);	    }/* L1114: */	}	entrat = -entrat / log((doublereal) (*m));/*        Analyze the entropies and decide A or A^t. Smaller entropy *//*        usually means better input for the algorithm. */	transp = entrat < entra;/*        If A^t is better than A, transpose A. */	if (transp) {/*           In an optimal implementation, this trivial transpose *//*           should be replaced with faster transpose. */	    i__1 = *n - 1;	    for (p = 1; p <= i__1; ++p) {		i__2 = *n;		for (q = p + 1; q <= i__2; ++q) {		    temp1 = a[q + p * a_dim1];		    a[q + p * a_dim1] = a[p + q * a_dim1];		    a[p + q * a_dim1] = temp1;/* L1116: */		}/* L1115: */	    }	    i__1 = *n;	    for (p = 1; p <= i__1; ++p) {		work[*m + *n + p] = sva[p];		sva[p] = work[*n + p];/* L1117: */	    }	    temp1 = aapp;	    aapp = aatmax;	    aatmax = temp1;	    temp1 = aaqq;	    aaqq = aatmin;	    aatmin = temp1;	    kill = lsvec;	    lsvec = rsvec;	    rsvec = kill;	    rowpiv = TRUE_;	}    }/*     END IF L2TRAN *//*     Scale the matrix so that its maximal singular value remains less *//*     than DSQRT(BIG) -- the matrix is scaled so that its maximal column *//*     has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep *//*     DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and *//*     BLAS routines that, in some implementations, are not capable of *//*     working in the full interval [SFMIN,BIG] and that they may provoke *//*     overflows in the intermediate results. If the singular values spread *//*     from SFMIN to BIG, then DGESVJ will compute them. So, in that case, *//*     one should use DGESVJ instead of DGEJSV. */    big1 = sqrt(big);    temp1 = sqrt(big / (doublereal) (*n));    dlascl_("G", &c__0, &c__0, &aapp, &temp1, n, &c__1, &sva[1], n, &ierr);    if (aaqq > aapp * sfmin) {	aaqq = aaqq / aapp * temp1;    } else {	aaqq = aaqq * temp1 / aapp;    }    temp1 *= scalem;    dlascl_("G", &c__0, &c__0, &aapp, &temp1, m, n, &a[a_offset], lda, &ierr);/*     To undo scaling at the end of this procedure, multiply the *//*     computed singular values with USCAL2 / USCAL1. */    uscal1 = temp1;    uscal2 = aapp;    if (l2kill) {/*        L2KILL enforces computation of nonzero singular values in *//*        the restricted range of condition number of the initial A, *//*        sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN). */	xsc = sqrt(sfmin);    } else {	xsc = small;/*        Now, if the condition number of A is too big, *//*        sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN, *//*        as a precaution measure, the full SVD is computed using DGESVJ *//*        with accumulated Jacobi rotations. This provides numerically *//*        more robust computation, at the cost of slightly increased run *//*        time. Depending on the concrete implementation of BLAS and LAPACK *//*        (i.e. how they behave in presence of extreme ill-conditioning) the *//*        implementor may decide to remove this switch. */	if (aaqq < sqrt(sfmin) && lsvec && rsvec) {	    jracc = TRUE_;	}    }    if (aaqq < xsc) {	i__1 = *n;	for (p = 1; p <= i__1; ++p) {	    if (sva[p] < xsc) {		dlaset_("A", m, &c__1, &c_b34, &c_b34, &a[p * a_dim1 + 1], 			lda);		sva[p] = 0.;	    }/* L700: */	}    }/*     Preconditioning using QR factorization with pivoting */    if (rowpiv) {/*        Optional row permutation (Bjoerck row pivoting): *//*        A result by Cox and Higham shows that the Bjoerck's *//*        row pivoting combined with standard column pivoting *//*        has similar effect as Powell-Reid complete pivoting. *//*        The ell-infinity norms of A are made nonincreasing. */	i__1 = *m - 1;	for (p = 1; p <= i__1; ++p) {	    i__2 = *m - p + 1;	    q = idamax_(&i__2, &work[*m + *n + p], &c__1) + p - 1;	    iwork[(*n << 1) + p] = q;	    if (p != q) {		temp1 = work[*m + *n + p];		work[*m + *n + p] = work[*m + *n + q];		work[*m + *n + q] = temp1;	    }/* L1952: */	}	i__1 = *m - 1;	dlaswp_(n, &a[a_offset], lda, &c__1, &i__1, &iwork[(*n << 1) + 1], &		c__1);    }/*     End of the preparation phase (scaling, optional sorting and *//*     transposing, optional flushing of small columns). *//*     Preconditioning *//*     If the full SVD is needed, the right singular vectors are computed *//*     from a matrix equation, and for that we need theoretical analysis *//*     of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF. *//*     In all other cases the first RR QRF can be chosen by other criteria *//*     (eg speed by replacing global with restricted window pivoting, such *//*     as in SGEQPX from TOMS # 782). Good results will be obtained using *//*     SGEQPX with properly (!) chosen numerical parameters. *//*     Any improvement of DGEQP3 improves overal performance of DGEJSV. *//*     A * P1 = Q1 * [ R1^t 0]^t: */    i__1 = *n;    for (p = 1; p <= i__1; ++p) {/*        .. all columns are free columns */	iwork[p] = 0;/* L1963: */    }    i__1 = *lwork - *n;    dgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &work[1], &work[*n + 1], &	    i__1, &ierr);/*     The upper triangular matrix R1 from the first QRF is inspected for *//*     rank deficiency and possibilities for deflation, or possible *//*     ill-conditioning. Depending on the user specified flag L2RANK, *//*     the procedure explores possibilities to reduce the numerical *//*     rank by inspecting the computed upper triangular factor. If *//*     L2RANK or L2ABER are up, then DGEJSV will compute the SVD of *//*     A + dA, where ||dA|| <= f(M,N)*EPSLN. */    nr = 1;    if (l2aber) {/*        Standard absolute error bound suffices. All sigma_i with *//*        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an *//*        agressive enforcement of lower numerical rank by introducing a *//*        backward error of the order of N*EPSLN*||A||. */	temp1 = sqrt((doublereal) (*n)) * epsln;	i__1 = *n;	for (p = 2; p <= i__1; ++p) {	    if ((d__2 = a[p + p * a_dim1], abs(d__2)) >= temp1 * (d__1 = a[		    a_dim1 + 1], abs(d__1))) {		++nr;	    } else {		goto L3002;	    }/* L3001: */	}L3002:	;    } else if (l2rank) {/*        .. similarly as above, only slightly more gentle (less agressive). *//*        Sudden drop on the diagonal of R1 is used as the criterion for *//*        close-to-rank-defficient. */	temp1 = sqrt(sfmin);	i__1 = *n;	for (p = 2; p <= i__1; ++p) {	    if ((d__2 = a[p + p * a_dim1], abs(d__2)) < epsln * (d__1 = a[p - 		    1 + (p - 1) * a_dim1], abs(d__1)) || (d__3 = a[p + p * 		    a_dim1], abs(d__3)) < small || l2kill && (d__4 = a[p + p *		     a_dim1], abs(d__4)) < temp1) {		goto L3402;	    }	    ++nr;/* L3401: */	}L3402:	;    } else {/*        The goal is high relative accuracy. However, if the matrix *//*        has high scaled condition number the relative accuracy is in *//*        general not feasible. Later on, a condition number estimator *//*        will be deployed to estimate the scaled condition number. *//*        Here we just remove the underflowed part of the triangular *//*        factor. This prevents the situation in which the code is *//*        working hard to get the accuracy not warranted by the data. */	temp1 = sqrt(sfmin);	i__1 = *n;	for (p = 2; p <= i__1; ++p) {	    if ((d__1 = a[p + p * a_dim1], abs(d__1)) < small || l2kill && (		    d__2 = a[p + p * a_dim1], abs(d__2)) < temp1) {		goto L3302;	    }	    ++nr;/* L3301: */	}L3302:	;    }    almort = FALSE_;    if (nr == *n) {	maxprj = 1.;	i__1 = *n;	for (p = 2; p <= i__1; ++p) {	    temp1 = (d__1 = a[p + p * a_dim1], abs(d__1)) / sva[iwork[p]];	    maxprj = min(maxprj,temp1);/* L3051: */	}/* Computing 2nd power */	d__1 = maxprj;	if (d__1 * d__1 >= 1. - (doublereal) (*n) * epsln) {	    almort = TRUE_;	}    }    sconda = -1.;    condr1 = -1.;    condr2 = -1.;    if (errest) {	if (*n == nr) {	    if (rsvec) {/*              .. V is available as workspace */		dlacpy_("U", n, n, &a[a_offset], lda, &v[v_offset], ldv);		i__1 = *n;		for (p = 1; p <= i__1; ++p) {		    temp1 = sva[iwork[p]];		    d__1 = 1. / temp1;		    dscal_(&p, &d__1, &v[p * v_dim1 + 1], &c__1);/* L3053: */		}		dpocon_("U", n, &v[v_offset], ldv, &c_b35, &temp1, &work[*n + 			1], &iwork[(*n << 1) + *m + 1], &ierr);	    } else if (lsvec) {/*              .. U is available as workspace */		dlacpy_("U", n, n, &a[a_offset], lda, &u[u_offset], ldu);		i__1 = *n;		for (p = 1; p <= i__1; ++p) {		    temp1 = sva[iwork[p]];		    d__1 = 1. / temp1;		    dscal_(&p, &d__1, &u[p * u_dim1 + 1], &c__1);/* L3054: */		}		dpocon_("U", n, &u[u_offset], ldu, &c_b35, &temp1, &work[*n + 			1], &iwork[(*n << 1) + *m + 1], &ierr);	    } else {		dlacpy_("U", n, n, &a[a_offset], lda, &work[*n + 1], n);		i__1 = *n;		for (p = 1; p <= i__1; ++p) {		    temp1 = sva[iwork[p]];		    d__1 = 1. / temp1;		    dscal_(&p, &d__1, &work[*n + (p - 1) * *n + 1], &c__1);/* L3052: */		}/*           .. the columns of R are scaled to have unit Euclidean lengths. */		dpocon_("U", n, &work[*n + 1], n, &c_b35, &temp1, &work[*n + *			n * *n + 1], &iwork[(*n << 1) + *m + 1], &ierr);	    }	    sconda = 1. / sqrt(temp1);/*           SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). *//*           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA */	} else {	    sconda = -1.;	}    }    l2pert = l2pert && (d__1 = a[a_dim1 + 1] / a[nr + nr * a_dim1], abs(d__1))	     > sqrt(big1);/*     If there is no violent scaling, artificial perturbation is not needed. *//*     Phase 3: */    if (! (rsvec || lsvec)) {/*         Singular Values only *//*         .. transpose A(1:NR,1:N) *//* Computing MIN */	i__2 = *n - 1;	i__1 = min(i__2,nr);	for (p = 1; p <= i__1; ++p) {	    i__2 = *n - p;	    dcopy_(&i__2, &a[p + (p + 1) * a_dim1], lda, &a[p + 1 + p * 		    a_dim1], &c__1);/* L1946: */	}/*        The following two DO-loops introduce small relative perturbation *//*        into the strict upper triangle of the lower triangular matrix. *//*        Small entries below the main diagonal are also changed. *//*        This modification is useful if the computing environment does not *//*        provide/allow FLUSH TO ZERO underflow, for it prevents many *//*        annoying denormalized numbers in case of strongly scaled matrices. *//*        The perturbation is structured so that it does not introduce any *//*        new perturbation of the singular values, and it does not destroy *//*        the job done by the preconditioner. *//*        The licence for this perturbation is in the variable L2PERT, which *//*        should be .FALSE. if FLUSH TO ZERO underflow is active. */	if (! almort) {	    if (l2pert) {/*              XSC = DSQRT(SMALL) */		xsc = epsln / (doublereal) (*n);		i__1 = nr;		for (q = 1; q <= i__1; ++q) {		    temp1 = xsc * (d__1 = a[q + q * a_dim1], abs(d__1));		    i__2 = *n;		    for (p = 1; p <= i__2; ++p) {			if (p > q && (d__1 = a[p + q * a_dim1], abs(d__1)) <= 				temp1 || p < q) {			    a[p + q * a_dim1] = d_sign(&temp1, &a[p + q * 				    a_dim1]);			}/* L4949: */		    }/* L4947: */		}	    } else {		i__1 = nr - 1;		i__2 = nr - 1;		dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &a[(a_dim1 << 1) + 			1], lda);	    }/*            .. second preconditioning using the QR factorization */	    i__1 = *lwork - *n;	    dgeqrf_(n, &nr, &a[a_offset], lda, &work[1], &work[*n + 1], &i__1, 		     &ierr);/*           .. and transpose upper to lower triangular */	    i__1 = nr - 1;	    for (p = 1; p <= i__1; ++p) {		i__2 = nr - p;		dcopy_(&i__2, &a[p + (p + 1) * a_dim1], lda, &a[p + 1 + p * 			a_dim1], &c__1);/* L1948: */	    }	}/*           Row-cyclic Jacobi SVD algorithm with column pivoting *//*           .. again some perturbation (a "background noise") is added *//*           to drown denormals */	if (l2pert) {/*              XSC = DSQRT(SMALL) */	    xsc = epsln / (doublereal) (*n);	    i__1 = nr;	    for (q = 1; q <= i__1; ++q) {		temp1 = xsc * (d__1 = a[q + q * a_dim1], abs(d__1));		i__2 = nr;		for (p = 1; p <= i__2; ++p) {		    if (p > q && (d__1 = a[p + q * a_dim1], abs(d__1)) <= 			    temp1 || p < q) {			a[p + q * a_dim1] = d_sign(&temp1, &a[p + q * a_dim1])				;		    }/* L1949: */		}/* L1947: */	    }	} else {	    i__1 = nr - 1;	    i__2 = nr - 1;	    dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &a[(a_dim1 << 1) + 1], 		    lda);	}/*           .. and one-sided Jacobi rotations are started on a lower *//*           triangular matrix (plus perturbation which is ignored in *//*           the part which destroys triangular form (confusing?!)) */	dgesvj_("L", "NoU", "NoV", &nr, &nr, &a[a_offset], lda, &sva[1], n, &		v[v_offset], ldv, &work[1], lwork, info);	scalem = work[1];	numrank = i_dnnt(&work[2]);    } else if (rsvec && ! lsvec) {/*        -> Singular Values and Right Singular Vectors <- */	if (almort) {/*           .. in this case NR equals N */	    i__1 = nr;	    for (p = 1; p <= i__1; ++p) {		i__2 = *n - p + 1;		dcopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1], &			c__1);/* L1998: */	    }	    i__1 = nr - 1;	    i__2 = nr - 1;	    dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 		    1], ldv);	    dgesvj_("L", "U", "N", n, &nr, &v[v_offset], ldv, &sva[1], &nr, &		    a[a_offset], lda, &work[1], lwork, info);	    scalem = work[1];	    numrank = i_dnnt(&work[2]);	} else {/*        .. two more QR factorizations ( one QRF is not enough, two require *//*        accumulated product of Jacobi rotations, three are perfect ) */	    i__1 = nr - 1;	    i__2 = nr - 1;	    dlaset_("Lower", &i__1, &i__2, &c_b34, &c_b34, &a[a_dim1 + 2], 		    lda);	    i__1 = *lwork - *n;	    dgelqf_(&nr, n, &a[a_offset], lda, &work[1], &work[*n + 1], &i__1, 		     &ierr);	    dlacpy_("Lower", &nr, &nr, &a[a_offset], lda, &v[v_offset], ldv);	    i__1 = nr - 1;	    i__2 = nr - 1;	    dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 		    1], ldv);	    i__1 = *lwork - (*n << 1);	    dgeqrf_(&nr, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*n << 		    1) + 1], &i__1, &ierr);	    i__1 = nr;	    for (p = 1; p <= i__1; ++p) {		i__2 = nr - p + 1;		dcopy_(&i__2, &v[p + p * v_dim1], ldv, &v[p + p * v_dim1], &			c__1);/* L8998: */	    }	    i__1 = nr - 1;	    i__2 = nr - 1;	    dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 		    1], ldv);	    dgesvj_("Lower", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[1], &		    nr, &u[u_offset], ldu, &work[*n + 1], lwork, info);	    scalem = work[*n + 1];	    numrank = i_dnnt(&work[*n + 2]);	    if (nr < *n) {		i__1 = *n - nr;		dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + v_dim1], 			ldv);		i__1 = *n - nr;		dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) * v_dim1 			+ 1], ldv);		i__1 = *n - nr;		i__2 = *n - nr;		dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 + (nr + 			1) * v_dim1], ldv);	    }	    i__1 = *lwork - *n;	    dormlq_("Left", "Transpose", n, n, &nr, &a[a_offset], lda, &work[		    1], &v[v_offset], ldv, &work[*n + 1], &i__1, &ierr);	}	i__1 = *n;	for (p = 1; p <= i__1; ++p) {	    dcopy_(n, &v[p + v_dim1], ldv, &a[iwork[p] + a_dim1], lda);/* L8991: */	}	dlacpy_("All", n, n, &a[a_offset], lda, &v[v_offset], ldv);	if (transp) {	    dlacpy_("All", n, n, &v[v_offset], ldv, &u[u_offset], ldu);	}    } else if (lsvec && ! rsvec) {/*        -#- Singular Values and Left Singular Vectors                 -#- *//*        .. second preconditioning step to avoid need to accumulate *//*        Jacobi rotations in the Jacobi iterations. */	i__1 = nr;	for (p = 1; p <= i__1; ++p) {	    i__2 = *n - p + 1;	    dcopy_(&i__2, &a[p + p * a_dim1], lda, &u[p + p * u_dim1], &c__1);/* L1965: */	}	i__1 = nr - 1;	i__2 = nr - 1;	dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 1], 		ldu);	i__1 = *lwork - (*n << 1);	dgeqrf_(n, &nr, &u[u_offset], ldu, &work[*n + 1], &work[(*n << 1) + 1], &i__1, &ierr);	i__1 = nr - 1;	for (p = 1; p <= i__1; ++p) {	    i__2 = nr - p;	    dcopy_(&i__2, &u[p + (p + 1) * u_dim1], ldu, &u[p + 1 + p * 		    u_dim1], &c__1);/* L1967: */	}	i__1 = nr - 1;	i__2 = nr - 1;	dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 1], 		ldu);	i__1 = *lwork - *n;	dgesvj_("Lower", "U", "N", &nr, &nr, &u[u_offset], ldu, &sva[1], &nr, 		&a[a_offset], lda, &work[*n + 1], &i__1, info);	scalem = work[*n + 1];	numrank = i_dnnt(&work[*n + 2]);	if (nr < *m) {	    i__1 = *m - nr;	    dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 + u_dim1], ldu);	    if (nr < n1) {		i__1 = n1 - nr;		dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) * u_dim1 			+ 1], ldu);		i__1 = *m - nr;		i__2 = n1 - nr;		dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 + (nr + 			1) * u_dim1], ldu);	    }	}	i__1 = *lwork - *n;	dormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[1], &u[		u_offset], ldu, &work[*n + 1], &i__1, &ierr);	if (rowpiv) {	    i__1 = *m - 1;	    dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n << 1) + 		    1], &c_n1);	}	i__1 = n1;	for (p = 1; p <= i__1; ++p) {	    xsc = 1. / dnrm2_(m, &u[p * u_dim1 + 1], &c__1);	    dscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);/* L1974: */	}	if (transp) {	    dlacpy_("All", n, n, &u[u_offset], ldu, &v[v_offset], ldv);	}    } else {/*        -#- Full SVD -#- */	if (! jracc) {	    if (! almort) {/*           Second Preconditioning Step (QRF [with pivoting]) *//*           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is *//*           equivalent to an LQF CALL. Since in many libraries the QRF *//*           seems to be better optimized than the LQF, we do explicit *//*           transpose and use the QRF. This is subject to changes in an *//*           optimized implementation of DGEJSV. */		i__1 = nr;		for (p = 1; p <= i__1; ++p) {		    i__2 = *n - p + 1;		    dcopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1], 			     &c__1);/* L1968: */		}/*           .. the following two loops perturb small entries to avoid *//*           denormals in the second QR factorization, where they are *//*           as good as zeros. This is done to avoid painfully slow *//*           computation with denormals. The relative size of the perturbation *//*           is a parameter that can be changed by the implementer. *//*           This perturbation device will be obsolete on machines with *//*           properly implemented arithmetic. *//*           To switch it off, set L2PERT=.FALSE. To remove it from  the *//*           code, remove the action under L2PERT=.TRUE., leave the ELSE part. *//*           The following two loops should be blocked and fused with the *//*           transposed copy above. */		if (l2pert) {		    xsc = sqrt(small);		    i__1 = nr;		    for (q = 1; q <= i__1; ++q) {			temp1 = xsc * (d__1 = v[q + q * v_dim1], abs(d__1));			i__2 = *n;			for (p = 1; p <= i__2; ++p) {			    if (p > q && (d__1 = v[p + q * v_dim1], abs(d__1))				     <= temp1 || p < q) {				v[p + q * v_dim1] = d_sign(&temp1, &v[p + q * 					v_dim1]);			    }			    if (p < q) {				v[p + q * v_dim1] = -v[p + q * v_dim1];			    }/* L2968: */			}/* L2969: */		    }		} else {		    i__1 = nr - 1;		    i__2 = nr - 1;		    dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 			    1) + 1], ldv);		}/*           Estimate the row scaled condition number of R1 *//*           (If R1 is rectangular, N > NR, then the condition number *//*           of the leading NR x NR submatrix is estimated.) */		dlacpy_("L", &nr, &nr, &v[v_offset], ldv, &work[(*n << 1) + 1], &nr);		i__1 = nr;		for (p = 1; p <= i__1; ++p) {		    i__2 = nr - p + 1;		    temp1 = dnrm2_(&i__2, &work[(*n << 1) + (p - 1) * nr + p], 			     &c__1);		    i__2 = nr - p + 1;		    d__1 = 1. / temp1;		    dscal_(&i__2, &d__1, &work[(*n << 1) + (p - 1) * nr + p], 			    &c__1);/* L3950: */		}		dpocon_("Lower", &nr, &work[(*n << 1) + 1], &nr, &c_b35, &			temp1, &work[(*n << 1) + nr * nr + 1], &iwork[*m + (*			n << 1) + 1], &ierr);		condr1 = 1. / sqrt(temp1);/*           .. here need a second oppinion on the condition number *//*           .. then assume worst case scenario *//*           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N) *//*           more conservative    <=> CONDR1 .LT. DSQRT(DBLE(N)) */		cond_ok__ = sqrt((doublereal) nr);/* [TP]       COND_OK is a tuning parameter. */		if (condr1 < cond_ok__) {/*              .. the second QRF without pivoting. Note: in an optimized *//*              implementation, this QRF should be implemented as the QRF *//*              of a lower triangular matrix. *//*              R1^t = Q2 * R2 */		    i__1 = *lwork - (*n << 1);		    dgeqrf_(n, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*			    n << 1) + 1], &i__1, &ierr);		    if (l2pert) {			xsc = sqrt(small) / epsln;			i__1 = nr;			for (p = 2; p <= i__1; ++p) {			    i__2 = p - 1;			    for (q = 1; q <= i__2; ++q) {/* Computing MIN */				d__3 = (d__1 = v[p + p * v_dim1], abs(d__1)), 					d__4 = (d__2 = v[q + q * v_dim1], abs(					d__2));				temp1 = xsc * min(d__3,d__4);				if ((d__1 = v[q + p * v_dim1], abs(d__1)) <= 					temp1) {				    v[q + p * v_dim1] = d_sign(&temp1, &v[q + 					    p * v_dim1]);				}/* L3958: */			    }/* L3959: */			}		    }		    if (nr != *n) {			dlacpy_("A", n, &nr, &v[v_offset], ldv, &work[(*n << 				1) + 1], n);		    }/*              .. save ... *//*           .. this transposed copy should be better than naive */		    i__1 = nr - 1;		    for (p = 1; p <= i__1; ++p) {			i__2 = nr - p;			dcopy_(&i__2, &v[p + (p + 1) * v_dim1], ldv, &v[p + 1 				+ p * v_dim1], &c__1);/* L1969: */		    }		    condr2 = condr1;		} else {/*              .. ill-conditioned case: second QRF with pivoting *//*              Note that windowed pivoting would be equaly good *//*              numerically, and more run-time efficient. So, in *//*              an optimal implementation, the next call to DGEQP3 *//*              should be replaced with eg. CALL SGEQPX (ACM TOMS #782) *//*              with properly (carefully) chosen parameters. *//*              R1^t * P2 = Q2 * R2 */		    i__1 = nr;		    for (p = 1; p <= i__1; ++p) {			iwork[*n + p] = 0;/* L3003: */		    }		    i__1 = *lwork - (*n << 1);		    dgeqp3_(n, &nr, &v[v_offset], ldv, &iwork[*n + 1], &work[*			    n + 1], &work[(*n << 1) + 1], &i__1, &ierr);/* *               CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), *//* *     &              LWORK-2*N, IERR ) */		    if (l2pert) {			xsc = sqrt(small);			i__1 = nr;			for (p = 2; p <= i__1; ++p) {			    i__2 = p - 1;			    for (q = 1; q <= i__2; ++q) {/* Computing MIN */				d__3 = (d__1 = v[p + p * v_dim1], abs(d__1)), 					d__4 = (d__2 = v[q + q * v_dim1], abs(					d__2));				temp1 = xsc * min(d__3,d__4);				if ((d__1 = v[q + p * v_dim1], abs(d__1)) <= 					temp1) {				    v[q + p * v_dim1] = d_sign(&temp1, &v[q + 					    p * v_dim1]);				}/* L3968: */			    }/* L3969: */			}		    }		    dlacpy_("A", n, &nr, &v[v_offset], ldv, &work[(*n << 1) + 			    1], n);		    if (l2pert) {			xsc = sqrt(small);			i__1 = nr;			for (p = 2; p <= i__1; ++p) {			    i__2 = p - 1;			    for (q = 1; q <= i__2; ++q) {/* Computing MIN */				d__3 = (d__1 = v[p + p * v_dim1], abs(d__1)), 					d__4 = (d__2 = v[q + q * v_dim1], abs(					d__2));				temp1 = xsc * min(d__3,d__4);				v[p + q * v_dim1] = -d_sign(&temp1, &v[q + p *					 v_dim1]);/* L8971: */			    }/* L8970: */			}		    } else {			i__1 = nr - 1;			i__2 = nr - 1;			dlaset_("L", &i__1, &i__2, &c_b34, &c_b34, &v[v_dim1 				+ 2], ldv);		    }/*              Now, compute R2 = L3 * Q3, the LQ factorization. */		    i__1 = *lwork - (*n << 1) - *n * nr - nr;		    dgelqf_(&nr, &nr, &v[v_offset], ldv, &work[(*n << 1) + *n 			    * nr + 1], &work[(*n << 1) + *n * nr + nr + 1], &			    i__1, &ierr);/*              .. and estimate the condition number */		    dlacpy_("L", &nr, &nr, &v[v_offset], ldv, &work[(*n << 1) 			    + *n * nr + nr + 1], &nr);		    i__1 = nr;		    for (p = 1; p <= i__1; ++p) {			temp1 = dnrm2_(&p, &work[(*n << 1) + *n * nr + nr + p], &nr);			d__1 = 1. / temp1;			dscal_(&p, &d__1, &work[(*n << 1) + *n * nr + nr + p], 				 &nr);/* L4950: */		    }		    dpocon_("L", &nr, &work[(*n << 1) + *n * nr + nr + 1], &			    nr, &c_b35, &temp1, &work[(*n << 1) + *n * nr + 			    nr + nr * nr + 1], &iwork[*m + (*n << 1) + 1], &			    ierr);		    condr2 = 1. / sqrt(temp1);		    if (condr2 >= cond_ok__) {/*                 .. save the Householder vectors used for Q3 *//*                 (this overwrittes the copy of R2, as it will not be *//*                 needed in this branch, but it does not overwritte the *//*                 Huseholder vectors of Q2.). */			dlacpy_("U", &nr, &nr, &v[v_offset], ldv, &work[(*n <<				 1) + 1], n);/*                 .. and the rest of the information on Q3 is in *//*                 WORK(2*N+N*NR+1:2*N+N*NR+N) */		    }		}		if (l2pert) {		    xsc = sqrt(small);		    i__1 = nr;		    for (q = 2; q <= i__1; ++q) {			temp1 = xsc * v[q + q * v_dim1];			i__2 = q - 1;			for (p = 1; p <= i__2; ++p) {/*                    V(p,q) = - DSIGN( TEMP1, V(q,p) ) */			    v[p + q * v_dim1] = -d_sign(&temp1, &v[p + q * 				    v_dim1]);/* L4969: */			}/* L4968: */		    }		} else {		    i__1 = nr - 1;		    i__2 = nr - 1;		    dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 			    1) + 1], ldv);		}/*        Second preconditioning finished; continue with Jacobi SVD *//*        The input matrix is lower trinagular. *//*        Recover the right singular vectors as solution of a well *//*        conditioned triangular matrix equation. */		if (condr1 < cond_ok__) {		    i__1 = *lwork - (*n << 1) - *n * nr - nr;		    dgesvj_("L", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[			    1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *			     nr + nr + 1], &i__1, info);		    scalem = work[(*n << 1) + *n * nr + nr + 1];		    numrank = i_dnnt(&work[(*n << 1) + *n * nr + nr + 2]);		    i__1 = nr;		    for (p = 1; p <= i__1; ++p) {			dcopy_(&nr, &v[p * v_dim1 + 1], &c__1, &u[p * u_dim1 				+ 1], &c__1);			dscal_(&nr, &sva[p], &v[p * v_dim1 + 1], &c__1);/* L3970: */		    }/*        .. pick the right matrix equation and solve it */		    if (nr == *n) {/* :))             .. best case, R1 is inverted. The solution of this matrix *//*                 equation is Q2*V2 = the product of the Jacobi rotations *//*                 used in DGESVJ, premultiplied with the orthogonal matrix *//*                 from the second QR factorization. */			dtrsm_("L", "U", "N", "N", &nr, &nr, &c_b35, &a[				a_offset], lda, &v[v_offset], ldv);		    } else {/*                 .. R1 is well conditioned, but non-square. Transpose(R2) *//*                 is inverted to get the product of the Jacobi rotations *//*                 used in DGESVJ. The Q-factor from the second QR *//*                 factorization is then built in explicitly. */			dtrsm_("L", "U", "T", "N", &nr, &nr, &c_b35, &work[(*				n << 1) + 1], n, &v[v_offset], ldv);			if (nr < *n) {			    i__1 = *n - nr;			    dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 				    1 + v_dim1], ldv);			    i__1 = *n - nr;			    dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 				    1) * v_dim1 + 1], ldv);			    i__1 = *n - nr;			    i__2 = *n - nr;			    dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr 				    + 1 + (nr + 1) * v_dim1], ldv);			}			i__1 = *lwork - (*n << 1) - *n * nr - nr;			dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, 				&work[*n + 1], &v[v_offset], ldv, &work[(*n <<				 1) + *n * nr + nr + 1], &i__1, &ierr);		    }		} else if (condr2 < cond_ok__) {/* :)           .. the input matrix A is very likely a relative of *//*              the Kahan matrix :) *//*              The matrix R2 is inverted. The solution of the matrix equation *//*              is Q3^T*V3 = the product of the Jacobi rotations (appplied to *//*              the lower triangular L3 from the LQ factorization of *//*              R2=L3*Q3), pre-multiplied with the transposed Q3. */		    i__1 = *lwork - (*n << 1) - *n * nr - nr;		    dgesvj_("L", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[			    1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *			     nr + nr + 1], &i__1, info);		    scalem = work[(*n << 1) + *n * nr + nr + 1];		    numrank = i_dnnt(&work[(*n << 1) + *n * nr + nr + 2]);		    i__1 = nr;		    for (p = 1; p <= i__1; ++p) {			dcopy_(&nr, &v[p * v_dim1 + 1], &c__1, &u[p * u_dim1 				+ 1], &c__1);			dscal_(&nr, &sva[p], &u[p * u_dim1 + 1], &c__1);/* L3870: */		    }		    dtrsm_("L", "U", "N", "N", &nr, &nr, &c_b35, &work[(*n << 			    1) + 1], n, &u[u_offset], ldu);/*              .. apply the permutation from the second QR factorization */		    i__1 = nr;		    for (q = 1; q <= i__1; ++q) {			i__2 = nr;			for (p = 1; p <= i__2; ++p) {			    work[(*n << 1) + *n * nr + nr + iwork[*n + p]] = 				    u[p + q * u_dim1];/* L872: */			}			i__2 = nr;			for (p = 1; p <= i__2; ++p) {			    u[p + q * u_dim1] = work[(*n << 1) + *n * nr + nr 				    + p];/* L874: */			}/* L873: */		    }		    if (nr < *n) {			i__1 = *n - nr;			dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + 				v_dim1], ldv);			i__1 = *n - nr;			dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) *				 v_dim1 + 1], ldv);			i__1 = *n - nr;			i__2 = *n - nr;			dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 				+ (nr + 1) * v_dim1], ldv);		    }		    i__1 = *lwork - (*n << 1) - *n * nr - nr;		    dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &			    work[*n + 1], &v[v_offset], ldv, &work[(*n << 1) 			    + *n * nr + nr + 1], &i__1, &ierr);		} else {/*              Last line of defense. *//* #:(          This is a rather pathological case: no scaled condition *//*              improvement after two pivoted QR factorizations. Other *//*              possibility is that the rank revealing QR factorization *//*              or the condition estimator has failed, or the COND_OK *//*              is set very close to ONE (which is unnecessary). Normally, *//*              this branch should never be executed, but in rare cases of *//*              failure of the RRQR or condition estimator, the last line of *//*              defense ensures that DGEJSV completes the task. *//*              Compute the full SVD of L3 using DGESVJ with explicit *//*              accumulation of Jacobi rotations. */		    i__1 = *lwork - (*n << 1) - *n * nr - nr;		    dgesvj_("L", "U", "V", &nr, &nr, &v[v_offset], ldv, &sva[			    1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *			     nr + nr + 1], &i__1, info);		    scalem = work[(*n << 1) + *n * nr + nr + 1];		    numrank = i_dnnt(&work[(*n << 1) + *n * nr + nr + 2]);		    if (nr < *n) {			i__1 = *n - nr;			dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + 				v_dim1], ldv);			i__1 = *n - nr;			dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) *				 v_dim1 + 1], ldv);			i__1 = *n - nr;			i__2 = *n - nr;			dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 				+ (nr + 1) * v_dim1], ldv);		    }		    i__1 = *lwork - (*n << 1) - *n * nr - nr;		    dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &			    work[*n + 1], &v[v_offset], ldv, &work[(*n << 1) 			    + *n * nr + nr + 1], &i__1, &ierr);		    i__1 = *lwork - (*n << 1) - *n * nr - nr;		    dormlq_("L", "T", &nr, &nr, &nr, &work[(*n << 1) + 1], n, 			    &work[(*n << 1) + *n * nr + 1], &u[u_offset], ldu, 			     &work[(*n << 1) + *n * nr + nr + 1], &i__1, &			    ierr);		    i__1 = nr;		    for (q = 1; q <= i__1; ++q) {			i__2 = nr;			for (p = 1; p <= i__2; ++p) {			    work[(*n << 1) + *n * nr + nr + iwork[*n + p]] = 				    u[p + q * u_dim1];/* L772: */			}			i__2 = nr;			for (p = 1; p <= i__2; ++p) {			    u[p + q * u_dim1] = work[(*n << 1) + *n * nr + nr 				    + p];/* L774: */			}/* L773: */		    }		}/*           Permute the rows of V using the (column) permutation from the *//*           first QRF. Also, scale the columns to make them unit in *//*           Euclidean norm. This applies to all cases. */		temp1 = sqrt((doublereal) (*n)) * epsln;		i__1 = *n;		for (q = 1; q <= i__1; ++q) {		    i__2 = *n;		    for (p = 1; p <= i__2; ++p) {			work[(*n << 1) + *n * nr + nr + iwork[p]] = v[p + q * 				v_dim1];/* L972: */		    }		    i__2 = *n;		    for (p = 1; p <= i__2; ++p) {			v[p + q * v_dim1] = work[(*n << 1) + *n * nr + nr + p]				;/* L973: */		    }		    xsc = 1. / dnrm2_(n, &v[q * v_dim1 + 1], &c__1);		    if (xsc < 1. - temp1 || xsc > temp1 + 1.) {			dscal_(n, &xsc, &v[q * v_dim1 + 1], &c__1);		    }/* L1972: */		}/*           At this moment, V contains the right singular vectors of A. *//*           Next, assemble the left singular vector matrix U (M x N). */		if (nr < *m) {		    i__1 = *m - nr;		    dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 + 			    u_dim1], ldu);		    if (nr < n1) {			i__1 = n1 - nr;			dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) *				 u_dim1 + 1], ldu);			i__1 = *m - nr;			i__2 = n1 - nr;			dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 				+ (nr + 1) * u_dim1], ldu);		    }		}/*           The Q matrix from the first QRF is built into the left singular *//*           matrix U. This applies to all cases. */		i__1 = *lwork - *n;		dormqr_("Left", "No_Tr", m, &n1, n, &a[a_offset], lda, &work[			1], &u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);/*           The columns of U are normalized. The cost is O(M*N) flops. */		temp1 = sqrt((doublereal) (*m)) * epsln;		i__1 = nr;		for (p = 1; p <= i__1; ++p) {		    xsc = 1. / dnrm2_(m, &u[p * u_dim1 + 1], &c__1);		    if (xsc < 1. - temp1 || xsc > temp1 + 1.) {			dscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);		    }/* L1973: */		}/*           If the initial QRF is computed with row pivoting, the left *//*           singular vectors must be adjusted. */		if (rowpiv) {		    i__1 = *m - 1;		    dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n 			    << 1) + 1], &c_n1);		}	    } else {/*        .. the initial matrix A has almost orthogonal columns and *//*        the second QRF is not needed */		dlacpy_("Upper", n, n, &a[a_offset], lda, &work[*n + 1], n);		if (l2pert) {		    xsc = sqrt(small);		    i__1 = *n;		    for (p = 2; p <= i__1; ++p) {			temp1 = xsc * work[*n + (p - 1) * *n + p];			i__2 = p - 1;			for (q = 1; q <= i__2; ++q) {			    work[*n + (q - 1) * *n + p] = -d_sign(&temp1, &				    work[*n + (p - 1) * *n + q]);/* L5971: */			}/* L5970: */		    }		} else {		    i__1 = *n - 1;		    i__2 = *n - 1;		    dlaset_("Lower", &i__1, &i__2, &c_b34, &c_b34, &work[*n + 			    2], n);		}		i__1 = *lwork - *n - *n * *n;		dgesvj_("Upper", "U", "N", n, n, &work[*n + 1], n, &sva[1], n, 			 &u[u_offset], ldu, &work[*n + *n * *n + 1], &i__1, 			info);		scalem = work[*n + *n * *n + 1];		numrank = i_dnnt(&work[*n + *n * *n + 2]);		i__1 = *n;		for (p = 1; p <= i__1; ++p) {		    dcopy_(n, &work[*n + (p - 1) * *n + 1], &c__1, &u[p * 			    u_dim1 + 1], &c__1);		    dscal_(n, &sva[p], &work[*n + (p - 1) * *n + 1], &c__1);/* L6970: */		}		dtrsm_("Left", "Upper", "NoTrans", "No UD", n, n, &c_b35, &a[			a_offset], lda, &work[*n + 1], n);		i__1 = *n;		for (p = 1; p <= i__1; ++p) {		    dcopy_(n, &work[*n + p], n, &v[iwork[p] + v_dim1], ldv);/* L6972: */		}		temp1 = sqrt((doublereal) (*n)) * epsln;		i__1 = *n;		for (p = 1; p <= i__1; ++p) {		    xsc = 1. / dnrm2_(n, &v[p * v_dim1 + 1], &c__1);		    if (xsc < 1. - temp1 || xsc > temp1 + 1.) {			dscal_(n, &xsc, &v[p * v_dim1 + 1], &c__1);		    }/* L6971: */		}/*           Assemble the left singular vector matrix U (M x N). */		if (*n < *m) {		    i__1 = *m - *n;		    dlaset_("A", &i__1, n, &c_b34, &c_b34, &u[nr + 1 + u_dim1], ldu);		    if (*n < n1) {			i__1 = n1 - *n;			dlaset_("A", n, &i__1, &c_b34, &c_b34, &u[(*n + 1) * 				u_dim1 + 1], ldu);			i__1 = *m - *n;			i__2 = n1 - *n;			dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 				+ (*n + 1) * u_dim1], ldu);		    }		}		i__1 = *lwork - *n;		dormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[			1], &u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);		temp1 = sqrt((doublereal) (*m)) * epsln;		i__1 = n1;		for (p = 1; p <= i__1; ++p) {		    xsc = 1. / dnrm2_(m, &u[p * u_dim1 + 1], &c__1);		    if (xsc < 1. - temp1 || xsc > temp1 + 1.) {			dscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);		    }/* L6973: */		}		if (rowpiv) {		    i__1 = *m - 1;		    dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n 			    << 1) + 1], &c_n1);		}	    }/*        end of the  >> almost orthogonal case <<  in the full SVD */	} else {/*        This branch deploys a preconditioned Jacobi SVD with explicitly *//*        accumulated rotations. It is included as optional, mainly for *//*        experimental purposes. It does perfom well, and can also be used. *//*        In this implementation, this branch will be automatically activated *//*        if the  condition number sigma_max(A) / sigma_min(A) is predicted *//*        to be greater than the overflow threshold. This is because the *//*        a posteriori computation of the singular vectors assumes robust *//*        implementation of BLAS and some LAPACK procedures, capable of working *//*        in presence of extreme values. Since that is not always the case, ... */	    i__1 = nr;	    for (p = 1; p <= i__1; ++p) {		i__2 = *n - p + 1;		dcopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1], &			c__1);/* L7968: */	    }	    if (l2pert) {		xsc = sqrt(small / epsln);		i__1 = nr;		for (q = 1; q <= i__1; ++q) {		    temp1 = xsc * (d__1 = v[q + q * v_dim1], abs(d__1));		    i__2 = *n;		    for (p = 1; p <= i__2; ++p) {			if (p > q && (d__1 = v[p + q * v_dim1], abs(d__1)) <= 				temp1 || p < q) {			    v[p + q * v_dim1] = d_sign(&temp1, &v[p + q * 				    v_dim1]);			}			if (p < q) {			    v[p + q * v_dim1] = -v[p + q * v_dim1];			}/* L5968: */		    }/* L5969: */		}	    } else {		i__1 = nr - 1;		i__2 = nr - 1;		dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 			1], ldv);	    }	    i__1 = *lwork - (*n << 1);	    dgeqrf_(n, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*n << 1) 		    + 1], &i__1, &ierr);	    dlacpy_("L", n, &nr, &v[v_offset], ldv, &work[(*n << 1) + 1], n);	    i__1 = nr;	    for (p = 1; p <= i__1; ++p) {		i__2 = nr - p + 1;		dcopy_(&i__2, &v[p + p * v_dim1], ldv, &u[p + p * u_dim1], &			c__1);/* L7969: */	    }	    if (l2pert) {		xsc = sqrt(small / epsln);		i__1 = nr;		for (q = 2; q <= i__1; ++q) {		    i__2 = q - 1;		    for (p = 1; p <= i__2; ++p) {/* Computing MIN */			d__3 = (d__1 = u[p + p * u_dim1], abs(d__1)), d__4 = (				d__2 = u[q + q * u_dim1], abs(d__2));			temp1 = xsc * min(d__3,d__4);			u[p + q * u_dim1] = -d_sign(&temp1, &u[q + p * u_dim1]				);/* L9971: */		    }/* L9970: */		}	    } else {		i__1 = nr - 1;		i__2 = nr - 1;		dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 			1], ldu);	    }	    i__1 = *lwork - (*n << 1) - *n * nr;	    dgesvj_("G", "U", "V", &nr, &nr, &u[u_offset], ldu, &sva[1], n, &		    v[v_offset], ldv, &work[(*n << 1) + *n * nr + 1], &i__1, 		    info);	    scalem = work[(*n << 1) + *n * nr + 1];	    numrank = i_dnnt(&work[(*n << 1) + *n * nr + 2]);	    if (nr < *n) {		i__1 = *n - nr;		dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + v_dim1], 			ldv);		i__1 = *n - nr;		dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) * v_dim1 			+ 1], ldv);		i__1 = *n - nr;		i__2 = *n - nr;		dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 + (nr + 			1) * v_dim1], ldv);	    }	    i__1 = *lwork - (*n << 1) - *n * nr - nr;	    dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &work[*n + 		    1], &v[v_offset], ldv, &work[(*n << 1) + *n * nr + nr + 1], &i__1, &ierr);/*           Permute the rows of V using the (column) permutation from the *//*           first QRF. Also, scale the columns to make them unit in *//*           Euclidean norm. This applies to all cases. */	    temp1 = sqrt((doublereal) (*n)) * epsln;	    i__1 = *n;	    for (q = 1; q <= i__1; ++q) {		i__2 = *n;		for (p = 1; p <= i__2; ++p) {		    work[(*n << 1) + *n * nr + nr + iwork[p]] = v[p + q * 			    v_dim1];/* L8972: */		}		i__2 = *n;		for (p = 1; p <= i__2; ++p) {		    v[p + q * v_dim1] = work[(*n << 1) + *n * nr + nr + p];/* L8973: */		}		xsc = 1. / dnrm2_(n, &v[q * v_dim1 + 1], &c__1);		if (xsc < 1. - temp1 || xsc > temp1 + 1.) {		    dscal_(n, &xsc, &v[q * v_dim1 + 1], &c__1);		}/* L7972: */	    }/*           At this moment, V contains the right singular vectors of A. *//*           Next, assemble the left singular vector matrix U (M x N). */	    if (*n < *m) {		i__1 = *m - *n;		dlaset_("A", &i__1, n, &c_b34, &c_b34, &u[nr + 1 + u_dim1], 			ldu);		if (*n < n1) {		    i__1 = n1 - *n;		    dlaset_("A", n, &i__1, &c_b34, &c_b34, &u[(*n + 1) * 			    u_dim1 + 1], ldu);		    i__1 = *m - *n;		    i__2 = n1 - *n;		    dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 + (*			    n + 1) * u_dim1], ldu);		}	    }	    i__1 = *lwork - *n;	    dormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[1], &		    u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);	    if (rowpiv) {		i__1 = *m - 1;		dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n << 1)			 + 1], &c_n1);	    }	}	if (transp) {/*           .. swap U and V because the procedure worked on A^t */	    i__1 = *n;	    for (p = 1; p <= i__1; ++p) {		dswap_(n, &u[p * u_dim1 + 1], &c__1, &v[p * v_dim1 + 1], &			c__1);/* L6974: */	    }	}    }/*     end of the full SVD *//*     Undo scaling, if necessary (and possible) */    if (uscal2 <= big / sva[1] * uscal1) {	dlascl_("G", &c__0, &c__0, &uscal1, &uscal2, &nr, &c__1, &sva[1], n, &		ierr);	uscal1 = 1.;	uscal2 = 1.;    }    if (nr < *n) {	i__1 = *n;	for (p = nr + 1; p <= i__1; ++p) {	    sva[p] = 0.;/* L3004: */	}    }    work[1] = uscal2 * scalem;    work[2] = uscal1;    if (errest) {	work[3] = sconda;    }    if (lsvec && rsvec) {	work[4] = condr1;	work[5] = condr2;    }    if (l2tran) {	work[6] = entra;	work[7] = entrat;    }    iwork[1] = nr;    iwork[2] = numrank;    iwork[3] = warning;    return 0;/*     .. *//*     .. END OF DGEJSV *//*     .. */} /* dgejsv_ */
 |