| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 | /* dgehrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;static integer c__65 = 65;static doublereal c_b25 = -1.;static doublereal c_b26 = 1.;/* Subroutine */ int dgehrd_(integer *n, integer *ilo, integer *ihi, 	doublereal *a, integer *lda, doublereal *tau, doublereal *work, 	integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, j;    doublereal t[4160]	/* was [65][64] */;    integer ib;    doublereal ei;    integer nb, nh, nx, iws;    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    integer nbmin, iinfo;    extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), daxpy_(	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *), dgehd2_(integer *, integer *, integer *, doublereal *, 	     integer *, doublereal *, doublereal *, integer *), dlahr2_(	    integer *, integer *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *), 	    dlarfb_(char *, char *, char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ldwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEHRD reduces a real general matrix A to upper Hessenberg form H by *//*  an orthogonal similarity transformation:  Q' * A * Q = H . *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  ILO     (input) INTEGER *//*  IHI     (input) INTEGER *//*          It is assumed that A is already upper triangular in rows *//*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally *//*          set by a previous call to DGEBAL; otherwise they should be *//*          set to 1 and N respectively. See Further Details. *//*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the N-by-N general matrix to be reduced. *//*          On exit, the upper triangle and the first subdiagonal of A *//*          are overwritten with the upper Hessenberg matrix H, and the *//*          elements below the first subdiagonal, with the array TAU, *//*          represent the orthogonal matrix Q as a product of elementary *//*          reflectors. See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to *//*          zero. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of the array WORK.  LWORK >= max(1,N). *//*          For optimum performance LWORK >= N*NB, where NB is the *//*          optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of (ihi-ilo) elementary *//*  reflectors *//*     Q = H(ilo) H(ilo+1) . . . H(ihi-1). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on *//*  exit in A(i+2:ihi,i), and tau in TAU(i). *//*  The contents of A are illustrated by the following example, with *//*  n = 7, ilo = 2 and ihi = 6: *//*  on entry,                        on exit, *//*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a ) *//*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a ) *//*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h ) *//*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h ) *//*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h ) *//*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h ) *//*  (                         a )    (                          a ) *//*  where a denotes an element of the original matrix A, h denotes a *//*  modified element of the upper Hessenberg matrix H, and vi denotes an *//*  element of the vector defining H(i). *//*  This file is a slight modification of LAPACK-3.0's DGEHRD *//*  subroutine incorporating improvements proposed by Quintana-Orti and *//*  Van de Geijn (2005). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;/* Computing MIN */    i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1);    nb = min(i__1,i__2);    lwkopt = *n * nb;    work[1] = (doublereal) lwkopt;    lquery = *lwork == -1;    if (*n < 0) {	*info = -1;    } else if (*ilo < 1 || *ilo > max(1,*n)) {	*info = -2;    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*lwork < max(1,*n) && ! lquery) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGEHRD", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */    i__1 = *ilo - 1;    for (i__ = 1; i__ <= i__1; ++i__) {	tau[i__] = 0.;/* L10: */    }    i__1 = *n - 1;    for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {	tau[i__] = 0.;/* L20: */    }/*     Quick return if possible */    nh = *ihi - *ilo + 1;    if (nh <= 1) {	work[1] = 1.;	return 0;    }/*     Determine the block size *//* Computing MIN */    i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1);    nb = min(i__1,i__2);    nbmin = 2;    iws = 1;    if (nb > 1 && nb < nh) {/*        Determine when to cross over from blocked to unblocked code *//*        (last block is always handled by unblocked code) *//* Computing MAX */	i__1 = nb, i__2 = ilaenv_(&c__3, "DGEHRD", " ", n, ilo, ihi, &c_n1);	nx = max(i__1,i__2);	if (nx < nh) {/*           Determine if workspace is large enough for blocked code */	    iws = *n * nb;	    if (*lwork < iws) {/*              Not enough workspace to use optimal NB:  determine the *//*              minimum value of NB, and reduce NB or force use of *//*              unblocked code *//* Computing MAX */		i__1 = 2, i__2 = ilaenv_(&c__2, "DGEHRD", " ", n, ilo, ihi, &			c_n1);		nbmin = max(i__1,i__2);		if (*lwork >= *n * nbmin) {		    nb = *lwork / *n;		} else {		    nb = 1;		}	    }	}    }    ldwork = *n;    if (nb < nbmin || nb >= nh) {/*        Use unblocked code below */	i__ = *ilo;    } else {/*        Use blocked code */	i__1 = *ihi - 1 - nx;	i__2 = nb;	for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {/* Computing MIN */	    i__3 = nb, i__4 = *ihi - i__;	    ib = min(i__3,i__4);/*           Reduce columns i:i+ib-1 to Hessenberg form, returning the *//*           matrices V and T of the block reflector H = I - V*T*V' *//*           which performs the reduction, and also the matrix Y = A*V*T */	    dlahr2_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &		    c__65, &work[1], &ldwork);/*           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the *//*           right, computing  A := A - Y * V'. V(i+ib,ib-1) must be set *//*           to 1 */	    ei = a[i__ + ib + (i__ + ib - 1) * a_dim1];	    a[i__ + ib + (i__ + ib - 1) * a_dim1] = 1.;	    i__3 = *ihi - i__ - ib + 1;	    dgemm_("No transpose", "Transpose", ihi, &i__3, &ib, &c_b25, &		    work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &		    c_b26, &a[(i__ + ib) * a_dim1 + 1], lda);	    a[i__ + ib + (i__ + ib - 1) * a_dim1] = ei;/*           Apply the block reflector H to A(1:i,i+1:i+ib-1) from the *//*           right */	    i__3 = ib - 1;	    dtrmm_("Right", "Lower", "Transpose", "Unit", &i__, &i__3, &c_b26, 		     &a[i__ + 1 + i__ * a_dim1], lda, &work[1], &ldwork);	    i__3 = ib - 2;	    for (j = 0; j <= i__3; ++j) {		daxpy_(&i__, &c_b25, &work[ldwork * j + 1], &c__1, &a[(i__ + 			j + 1) * a_dim1 + 1], &c__1);/* L30: */	    }/*           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the *//*           left */	    i__3 = *ihi - i__;	    i__4 = *n - i__ - ib + 1;	    dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &		    i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &c__65, &a[		    i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &ldwork);/* L40: */	}    }/*     Use unblocked code to reduce the rest of the matrix */    dgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);    work[1] = (doublereal) iws;    return 0;/*     End of DGEHRD */} /* dgehrd_ */
 |