| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550 | /* dgees.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__0 = 0;static integer c_n1 = -1;/* Subroutine */ int dgees_(char *jobvs, char *sort, L_fp select, integer *n, 	doublereal *a, integer *lda, integer *sdim, doublereal *wr, 	doublereal *wi, doublereal *vs, integer *ldvs, doublereal *work, 	integer *lwork, logical *bwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__;    doublereal s;    integer i1, i2, ip, ihi, ilo;    doublereal dum[1], eps, sep;    integer ibal;    doublereal anrm;    integer idum[1], ierr, itau, iwrk, inxt, icond, ieval;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    logical cursl;    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebak_(	    char *, char *, integer *, integer *, integer *, doublereal *, 	    integer *, doublereal *, integer *, integer *), 	    dgebal_(char *, integer *, doublereal *, integer *, integer *, 	    integer *, doublereal *, integer *);    logical lst2sl, scalea;    extern doublereal dlamch_(char *);    doublereal cscale;    extern doublereal dlange_(char *, integer *, integer *, doublereal *, 	    integer *, doublereal *);    extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *), dlascl_(char *, integer *, integer *, doublereal *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *), dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    doublereal bignum;    extern /* Subroutine */ int dorghr_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *), dhseqr_(char *, char *, integer *, integer *, integer 	    *, doublereal *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, integer *), dtrsen_(char *, char *, logical *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *, integer *, integer *);    logical lastsl;    integer minwrk, maxwrk;    doublereal smlnum;    integer hswork;    logical wantst, lquery, wantvs;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*     .. Function Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEES computes for an N-by-N real nonsymmetric matrix A, the *//*  eigenvalues, the real Schur form T, and, optionally, the matrix of *//*  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T). *//*  Optionally, it also orders the eigenvalues on the diagonal of the *//*  real Schur form so that selected eigenvalues are at the top left. *//*  The leading columns of Z then form an orthonormal basis for the *//*  invariant subspace corresponding to the selected eigenvalues. *//*  A matrix is in real Schur form if it is upper quasi-triangular with *//*  1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the *//*  form *//*          [  a  b  ] *//*          [  c  a  ] *//*  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). *//*  Arguments *//*  ========= *//*  JOBVS   (input) CHARACTER*1 *//*          = 'N': Schur vectors are not computed; *//*          = 'V': Schur vectors are computed. *//*  SORT    (input) CHARACTER*1 *//*          Specifies whether or not to order the eigenvalues on the *//*          diagonal of the Schur form. *//*          = 'N': Eigenvalues are not ordered; *//*          = 'S': Eigenvalues are ordered (see SELECT). *//*  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments *//*          SELECT must be declared EXTERNAL in the calling subroutine. *//*          If SORT = 'S', SELECT is used to select eigenvalues to sort *//*          to the top left of the Schur form. *//*          If SORT = 'N', SELECT is not referenced. *//*          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if *//*          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex *//*          conjugate pair of eigenvalues is selected, then both complex *//*          eigenvalues are selected. *//*          Note that a selected complex eigenvalue may no longer *//*          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since *//*          ordering may change the value of complex eigenvalues *//*          (especially if the eigenvalue is ill-conditioned); in this *//*          case INFO is set to N+2 (see INFO below). *//*  N       (input) INTEGER *//*          The order of the matrix A. N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the N-by-N matrix A. *//*          On exit, A has been overwritten by its real Schur form T. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  SDIM    (output) INTEGER *//*          If SORT = 'N', SDIM = 0. *//*          If SORT = 'S', SDIM = number of eigenvalues (after sorting) *//*                         for which SELECT is true. (Complex conjugate *//*                         pairs for which SELECT is true for either *//*                         eigenvalue count as 2.) *//*  WR      (output) DOUBLE PRECISION array, dimension (N) *//*  WI      (output) DOUBLE PRECISION array, dimension (N) *//*          WR and WI contain the real and imaginary parts, *//*          respectively, of the computed eigenvalues in the same order *//*          that they appear on the diagonal of the output Schur form T. *//*          Complex conjugate pairs of eigenvalues will appear *//*          consecutively with the eigenvalue having the positive *//*          imaginary part first. *//*  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N) *//*          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur *//*          vectors. *//*          If JOBVS = 'N', VS is not referenced. *//*  LDVS    (input) INTEGER *//*          The leading dimension of the array VS.  LDVS >= 1; if *//*          JOBVS = 'V', LDVS >= N. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) contains the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,3*N). *//*          For good performance, LWORK must generally be larger. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  BWORK   (workspace) LOGICAL array, dimension (N) *//*          Not referenced if SORT = 'N'. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value. *//*          > 0: if INFO = i, and i is *//*             <= N: the QR algorithm failed to compute all the *//*                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI *//*                   contain those eigenvalues which have converged; if *//*                   JOBVS = 'V', VS contains the matrix which reduces A *//*                   to its partially converged Schur form. *//*             = N+1: the eigenvalues could not be reordered because some *//*                   eigenvalues were too close to separate (the problem *//*                   is very ill-conditioned); *//*             = N+2: after reordering, roundoff changed values of some *//*                   complex eigenvalues so that leading eigenvalues in *//*                   the Schur form no longer satisfy SELECT=.TRUE.  This *//*                   could also be caused by underflow due to scaling. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --wr;    --wi;    vs_dim1 = *ldvs;    vs_offset = 1 + vs_dim1;    vs -= vs_offset;    --work;    --bwork;    /* Function Body */    *info = 0;    lquery = *lwork == -1;    wantvs = lsame_(jobvs, "V");    wantst = lsame_(sort, "S");    if (! wantvs && ! lsame_(jobvs, "N")) {	*info = -1;    } else if (! wantst && ! lsame_(sort, "N")) {	*info = -2;    } else if (*n < 0) {	*info = -4;    } else if (*lda < max(1,*n)) {	*info = -6;    } else if (*ldvs < 1 || wantvs && *ldvs < *n) {	*info = -11;    }/*     Compute workspace *//*      (Note: Comments in the code beginning "Workspace:" describe the *//*       minimal amount of workspace needed at that point in the code, *//*       as well as the preferred amount for good performance. *//*       NB refers to the optimal block size for the immediately *//*       following subroutine, as returned by ILAENV. *//*       HSWORK refers to the workspace preferred by DHSEQR, as *//*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, *//*       the worst case.) */    if (*info == 0) {	if (*n == 0) {	    minwrk = 1;	    maxwrk = 1;	} else {	    maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1, 		    n, &c__0);	    minwrk = *n * 3;	    dhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1], &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);	    hswork = (integer) work[1];	    if (! wantvs) {/* Computing MAX */		i__1 = maxwrk, i__2 = *n + hswork;		maxwrk = max(i__1,i__2);	    } else {/* Computing MAX */		i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, 			"DORGHR", " ", n, &c__1, n, &c_n1);		maxwrk = max(i__1,i__2);/* Computing MAX */		i__1 = maxwrk, i__2 = *n + hswork;		maxwrk = max(i__1,i__2);	    }	}	work[1] = (doublereal) maxwrk;	if (*lwork < minwrk && ! lquery) {	    *info = -13;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGEES ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	*sdim = 0;	return 0;    }/*     Get machine constants */    eps = dlamch_("P");    smlnum = dlamch_("S");    bignum = 1. / smlnum;    dlabad_(&smlnum, &bignum);    smlnum = sqrt(smlnum) / eps;    bignum = 1. / smlnum;/*     Scale A if max element outside range [SMLNUM,BIGNUM] */    anrm = dlange_("M", n, n, &a[a_offset], lda, dum);    scalea = FALSE_;    if (anrm > 0. && anrm < smlnum) {	scalea = TRUE_;	cscale = smlnum;    } else if (anrm > bignum) {	scalea = TRUE_;	cscale = bignum;    }    if (scalea) {	dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &		ierr);    }/*     Permute the matrix to make it more nearly triangular *//*     (Workspace: need N) */    ibal = 1;    dgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);/*     Reduce to upper Hessenberg form *//*     (Workspace: need 3*N, prefer 2*N+N*NB) */    itau = *n + ibal;    iwrk = *n + itau;    i__1 = *lwork - iwrk + 1;    dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, 	     &ierr);    if (wantvs) {/*        Copy Householder vectors to VS */	dlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)		;/*        Generate orthogonal matrix in VS *//*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */	i__1 = *lwork - iwrk + 1;	dorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk], 		 &i__1, &ierr);    }    *sdim = 0;/*     Perform QR iteration, accumulating Schur vectors in VS if desired *//*     (Workspace: need N+1, prefer N+HSWORK (see comments) ) */    iwrk = itau;    i__1 = *lwork - iwrk + 1;    dhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[	    vs_offset], ldvs, &work[iwrk], &i__1, &ieval);    if (ieval > 0) {	*info = ieval;    }/*     Sort eigenvalues if desired */    if (wantst && *info == 0) {	if (scalea) {	    dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &		    ierr);	    dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &		    ierr);	}	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    bwork[i__] = (*select)(&wr[i__], &wi[i__]);/* L10: */	}/*        Reorder eigenvalues and transform Schur vectors *//*        (Workspace: none needed) */	i__1 = *lwork - iwrk + 1;	dtrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], 		ldvs, &wr[1], &wi[1], sdim, &s, &sep, &work[iwrk], &i__1, 		idum, &c__1, &icond);	if (icond > 0) {	    *info = *n + icond;	}    }    if (wantvs) {/*        Undo balancing *//*        (Workspace: need N) */	dgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs, 		 &ierr);    }    if (scalea) {/*        Undo scaling for the Schur form of A */	dlascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &		ierr);	i__1 = *lda + 1;	dcopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);	if (cscale == smlnum) {/*           If scaling back towards underflow, adjust WI if an *//*           offdiagonal element of a 2-by-2 block in the Schur form *//*           underflows. */	    if (ieval > 0) {		i1 = ieval + 1;		i2 = ihi - 1;		i__1 = ilo - 1;/* Computing MAX */		i__3 = ilo - 1;		i__2 = max(i__3,1);		dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[			1], &i__2, &ierr);	    } else if (wantst) {		i1 = 1;		i2 = *n - 1;	    } else {		i1 = ilo;		i2 = ihi - 1;	    }	    inxt = i1 - 1;	    i__1 = i2;	    for (i__ = i1; i__ <= i__1; ++i__) {		if (i__ < inxt) {		    goto L20;		}		if (wi[i__] == 0.) {		    inxt = i__ + 1;		} else {		    if (a[i__ + 1 + i__ * a_dim1] == 0.) {			wi[i__] = 0.;			wi[i__ + 1] = 0.;		    } else if (a[i__ + 1 + i__ * a_dim1] != 0. && a[i__ + (			    i__ + 1) * a_dim1] == 0.) {			wi[i__] = 0.;			wi[i__ + 1] = 0.;			if (i__ > 1) {			    i__2 = i__ - 1;			    dswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(				    i__ + 1) * a_dim1 + 1], &c__1);			}			if (*n > i__ + 1) {			    i__2 = *n - i__ - 1;			    dswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &				    a[i__ + 1 + (i__ + 2) * a_dim1], lda);			}			if (wantvs) {			    dswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__ 				    + 1) * vs_dim1 + 1], &c__1);			}			a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ * 				a_dim1];			a[i__ + 1 + i__ * a_dim1] = 0.;		    }		    inxt = i__ + 2;		}L20:		;	    }	}/*        Undo scaling for the imaginary part of the eigenvalues */	i__1 = *n - ieval;/* Computing MAX */	i__3 = *n - ieval;	i__2 = max(i__3,1);	dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval + 		1], &i__2, &ierr);    }    if (wantst && *info == 0) {/*        Check if reordering successful */	lastsl = TRUE_;	lst2sl = TRUE_;	*sdim = 0;	ip = 0;	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    cursl = (*select)(&wr[i__], &wi[i__]);	    if (wi[i__] == 0.) {		if (cursl) {		    ++(*sdim);		}		ip = 0;		if (cursl && ! lastsl) {		    *info = *n + 2;		}	    } else {		if (ip == 1) {/*                 Last eigenvalue of conjugate pair */		    cursl = cursl || lastsl;		    lastsl = cursl;		    if (cursl) {			*sdim += 2;		    }		    ip = -1;		    if (cursl && ! lst2sl) {			*info = *n + 2;		    }		} else {/*                 First eigenvalue of conjugate pair */		    ip = 1;		}	    }	    lst2sl = lastsl;	    lastsl = cursl;/* L30: */	}    }    work[1] = (doublereal) maxwrk;    return 0;/*     End of DGEES */} /* dgees_ */
 |