| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 | /* dgebd2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dgebd2_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *	taup, doublereal *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__;    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *), dlarfg_(integer *, doublereal *, 	    doublereal *, integer *, doublereal *), xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEBD2 reduces a real general m by n matrix A to upper or lower *//*  bidiagonal form B by an orthogonal transformation: Q' * A * P = B. *//*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows in the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns in the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the m by n general matrix to be reduced. *//*          On exit, *//*          if m >= n, the diagonal and the first superdiagonal are *//*            overwritten with the upper bidiagonal matrix B; the *//*            elements below the diagonal, with the array TAUQ, represent *//*            the orthogonal matrix Q as a product of elementary *//*            reflectors, and the elements above the first superdiagonal, *//*            with the array TAUP, represent the orthogonal matrix P as *//*            a product of elementary reflectors; *//*          if m < n, the diagonal and the first subdiagonal are *//*            overwritten with the lower bidiagonal matrix B; the *//*            elements below the first subdiagonal, with the array TAUQ, *//*            represent the orthogonal matrix Q as a product of *//*            elementary reflectors, and the elements above the diagonal, *//*            with the array TAUP, represent the orthogonal matrix P as *//*            a product of elementary reflectors. *//*          See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  D       (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The diagonal elements of the bidiagonal matrix B: *//*          D(i) = A(i,i). *//*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1) *//*          The off-diagonal elements of the bidiagonal matrix B: *//*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; *//*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. *//*  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix Q. See Further Details. *//*  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix P. See Further Details. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(M,N)) *//*  INFO    (output) INTEGER *//*          = 0: successful exit. *//*          < 0: if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  The matrices Q and P are represented as products of elementary *//*  reflectors: *//*  If m >= n, *//*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1) *//*  Each H(i) and G(i) has the form: *//*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' *//*  where tauq and taup are real scalars, and v and u are real vectors; *//*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); *//*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); *//*  tauq is stored in TAUQ(i) and taup in TAUP(i). *//*  If m < n, *//*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m) *//*  Each H(i) and G(i) has the form: *//*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' *//*  where tauq and taup are real scalars, and v and u are real vectors; *//*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); *//*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); *//*  tauq is stored in TAUQ(i) and taup in TAUP(i). *//*  The contents of A on exit are illustrated by the following examples: *//*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): *//*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 ) *//*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 ) *//*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 ) *//*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 ) *//*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 ) *//*    (  v1  v2  v3  v4  v5 ) *//*  where d and e denote diagonal and off-diagonal elements of B, vi *//*  denotes an element of the vector defining H(i), and ui an element of *//*  the vector defining G(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --d__;    --e;    --tauq;    --taup;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info < 0) {	i__1 = -(*info);	xerbla_("DGEBD2", &i__1);	return 0;    }    if (*m >= *n) {/*        Reduce to upper bidiagonal form */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Generate elementary reflector H(i) to annihilate A(i+1:m,i) */	    i__2 = *m - i__ + 1;/* Computing MIN */	    i__3 = i__ + 1;	    dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * 		    a_dim1], &c__1, &tauq[i__]);	    d__[i__] = a[i__ + i__ * a_dim1];	    a[i__ + i__ * a_dim1] = 1.;/*           Apply H(i) to A(i:m,i+1:n) from the left */	    if (i__ < *n) {		i__2 = *m - i__ + 1;		i__3 = *n - i__;		dlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &			tauq[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);	    }	    a[i__ + i__ * a_dim1] = d__[i__];	    if (i__ < *n) {/*              Generate elementary reflector G(i) to annihilate *//*              A(i,i+2:n) */		i__2 = *n - i__;/* Computing MIN */		i__3 = i__ + 2;		dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(			i__3, *n)* a_dim1], lda, &taup[i__]);		e[i__] = a[i__ + (i__ + 1) * a_dim1];		a[i__ + (i__ + 1) * a_dim1] = 1.;/*              Apply G(i) to A(i+1:m,i+1:n) from the right */		i__2 = *m - i__;		i__3 = *n - i__;		dlarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1], 			lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], 			lda, &work[1]);		a[i__ + (i__ + 1) * a_dim1] = e[i__];	    } else {		taup[i__] = 0.;	    }/* L10: */	}    } else {/*        Reduce to lower bidiagonal form */	i__1 = *m;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Generate elementary reflector G(i) to annihilate A(i,i+1:n) */	    i__2 = *n - i__ + 1;/* Computing MIN */	    i__3 = i__ + 1;	    dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* 		    a_dim1], lda, &taup[i__]);	    d__[i__] = a[i__ + i__ * a_dim1];	    a[i__ + i__ * a_dim1] = 1.;/*           Apply G(i) to A(i+1:m,i:n) from the right */	    if (i__ < *m) {		i__2 = *m - i__;		i__3 = *n - i__ + 1;		dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &			taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);	    }	    a[i__ + i__ * a_dim1] = d__[i__];	    if (i__ < *m) {/*              Generate elementary reflector H(i) to annihilate *//*              A(i+2:m,i) */		i__2 = *m - i__;/* Computing MIN */		i__3 = i__ + 2;		dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+ 			i__ * a_dim1], &c__1, &tauq[i__]);		e[i__] = a[i__ + 1 + i__ * a_dim1];		a[i__ + 1 + i__ * a_dim1] = 1.;/*              Apply H(i) to A(i+1:m,i+1:n) from the left */		i__2 = *m - i__;		i__3 = *n - i__;		dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &			c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], 			lda, &work[1]);		a[i__ + 1 + i__ * a_dim1] = e[i__];	    } else {		tauq[i__] = 0.;	    }/* L20: */	}    }    return 0;/*     End of DGEBD2 */} /* dgebd2_ */
 |