| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 | 
							- /* dbdsdc.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__9 = 9;
 
- static integer c__0 = 0;
 
- static doublereal c_b15 = 1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b29 = 0.;
 
- /* Subroutine */ int dbdsdc_(char *uplo, char *compq, integer *n, doublereal *
 
- 	d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt, 
 
- 	integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *
 
- 	iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double d_sign(doublereal *, doublereal *), log(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k;
 
-     doublereal p, r__;
 
-     integer z__, ic, ii, kk;
 
-     doublereal cs;
 
-     integer is, iu;
 
-     doublereal sn;
 
-     integer nm1;
 
-     doublereal eps;
 
-     integer ivt, difl, difr, ierr, perm, mlvl, sqre;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
 
- , doublereal *, integer *), dswap_(integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *);
 
-     integer poles, iuplo, nsize, start;
 
-     extern /* Subroutine */ int dlasd0_(integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *);
 
-     extern doublereal dlamch_(char *);
 
-     extern /* Subroutine */ int dlasda_(integer *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, integer *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     integer *), dlascl_(char *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *), dlasdq_(char *, integer *, integer *, integer 
 
- 	    *, integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dlaset_(char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     integer givcol;
 
-     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
 
-     integer icompq;
 
-     doublereal orgnrm;
 
-     integer givnum, givptr, qstart, smlsiz, wstart, smlszp;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DBDSDC computes the singular value decomposition (SVD) of a real */
 
- /*  N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT, */
 
- /*  using a divide and conquer method, where S is a diagonal matrix */
 
- /*  with non-negative diagonal elements (the singular values of B), and */
 
- /*  U and VT are orthogonal matrices of left and right singular vectors, */
 
- /*  respectively. DBDSDC can be used to compute all singular values, */
 
- /*  and optionally, singular vectors or singular vectors in compact form. */
 
- /*  This code makes very mild assumptions about floating point */
 
- /*  arithmetic. It will work on machines with a guard digit in */
 
- /*  add/subtract, or on those binary machines without guard digits */
 
- /*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
 
- /*  It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none.  See DLASD3 for details. */
 
- /*  The code currently calls DLASDQ if singular values only are desired. */
 
- /*  However, it can be slightly modified to compute singular values */
 
- /*  using the divide and conquer method. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  B is upper bidiagonal. */
 
- /*          = 'L':  B is lower bidiagonal. */
 
- /*  COMPQ   (input) CHARACTER*1 */
 
- /*          Specifies whether singular vectors are to be computed */
 
- /*          as follows: */
 
- /*          = 'N':  Compute singular values only; */
 
- /*          = 'P':  Compute singular values and compute singular */
 
- /*                  vectors in compact form; */
 
- /*          = 'I':  Compute singular values and singular vectors. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix B.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the n diagonal elements of the bidiagonal matrix B. */
 
- /*          On exit, if INFO=0, the singular values of B. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the elements of E contain the offdiagonal */
 
- /*          elements of the bidiagonal matrix whose SVD is desired. */
 
- /*          On exit, E has been destroyed. */
 
- /*  U       (output) DOUBLE PRECISION array, dimension (LDU,N) */
 
- /*          If  COMPQ = 'I', then: */
 
- /*             On exit, if INFO = 0, U contains the left singular vectors */
 
- /*             of the bidiagonal matrix. */
 
- /*          For other values of COMPQ, U is not referenced. */
 
- /*  LDU     (input) INTEGER */
 
- /*          The leading dimension of the array U.  LDU >= 1. */
 
- /*          If singular vectors are desired, then LDU >= max( 1, N ). */
 
- /*  VT      (output) DOUBLE PRECISION array, dimension (LDVT,N) */
 
- /*          If  COMPQ = 'I', then: */
 
- /*             On exit, if INFO = 0, VT' contains the right singular */
 
- /*             vectors of the bidiagonal matrix. */
 
- /*          For other values of COMPQ, VT is not referenced. */
 
- /*  LDVT    (input) INTEGER */
 
- /*          The leading dimension of the array VT.  LDVT >= 1. */
 
- /*          If singular vectors are desired, then LDVT >= max( 1, N ). */
 
- /*  Q       (output) DOUBLE PRECISION array, dimension (LDQ) */
 
- /*          If  COMPQ = 'P', then: */
 
- /*             On exit, if INFO = 0, Q and IQ contain the left */
 
- /*             and right singular vectors in a compact form, */
 
- /*             requiring O(N log N) space instead of 2*N**2. */
 
- /*             In particular, Q contains all the DOUBLE PRECISION data in */
 
- /*             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
 
- /*             words of memory, where SMLSIZ is returned by ILAENV and */
 
- /*             is equal to the maximum size of the subproblems at the */
 
- /*             bottom of the computation tree (usually about 25). */
 
- /*          For other values of COMPQ, Q is not referenced. */
 
- /*  IQ      (output) INTEGER array, dimension (LDIQ) */
 
- /*          If  COMPQ = 'P', then: */
 
- /*             On exit, if INFO = 0, Q and IQ contain the left */
 
- /*             and right singular vectors in a compact form, */
 
- /*             requiring O(N log N) space instead of 2*N**2. */
 
- /*             In particular, IQ contains all INTEGER data in */
 
- /*             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
 
- /*             words of memory, where SMLSIZ is returned by ILAENV and */
 
- /*             is equal to the maximum size of the subproblems at the */
 
- /*             bottom of the computation tree (usually about 25). */
 
- /*          For other values of COMPQ, IQ is not referenced. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          If COMPQ = 'N' then LWORK >= (4 * N). */
 
- /*          If COMPQ = 'P' then LWORK >= (6 * N). */
 
- /*          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
 
- /*  IWORK   (workspace) INTEGER array, dimension (8*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  The algorithm failed to compute an singular value. */
 
- /*                The update process of divide and conquer failed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*  Changed dimension statement in comment describing E from (N) to */
 
- /*  (N-1).  Sven, 17 Feb 05. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     vt_dim1 = *ldvt;
 
-     vt_offset = 1 + vt_dim1;
 
-     vt -= vt_offset;
 
-     --q;
 
-     --iq;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     iuplo = 0;
 
-     if (lsame_(uplo, "U")) {
 
- 	iuplo = 1;
 
-     }
 
-     if (lsame_(uplo, "L")) {
 
- 	iuplo = 2;
 
-     }
 
-     if (lsame_(compq, "N")) {
 
- 	icompq = 0;
 
-     } else if (lsame_(compq, "P")) {
 
- 	icompq = 1;
 
-     } else if (lsame_(compq, "I")) {
 
- 	icompq = 2;
 
-     } else {
 
- 	icompq = -1;
 
-     }
 
-     if (iuplo == 0) {
 
- 	*info = -1;
 
-     } else if (icompq < 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
 
- 	*info = -7;
 
-     } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
 
- 	*info = -9;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DBDSDC", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     smlsiz = ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0);
 
-     if (*n == 1) {
 
- 	if (icompq == 1) {
 
- 	    q[1] = d_sign(&c_b15, &d__[1]);
 
- 	    q[smlsiz * *n + 1] = 1.;
 
- 	} else if (icompq == 2) {
 
- 	    u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);
 
- 	    vt[vt_dim1 + 1] = 1.;
 
- 	}
 
- 	d__[1] = abs(d__[1]);
 
- 	return 0;
 
-     }
 
-     nm1 = *n - 1;
 
- /*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
 
- /*     by applying Givens rotations on the left */
 
-     wstart = 1;
 
-     qstart = 3;
 
-     if (icompq == 1) {
 
- 	dcopy_(n, &d__[1], &c__1, &q[1], &c__1);
 
- 	i__1 = *n - 1;
 
- 	dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
 
-     }
 
-     if (iuplo == 2) {
 
- 	qstart = 5;
 
- 	wstart = (*n << 1) - 1;
 
- 	i__1 = *n - 1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 
- 	    d__[i__] = r__;
 
- 	    e[i__] = sn * d__[i__ + 1];
 
- 	    d__[i__ + 1] = cs * d__[i__ + 1];
 
- 	    if (icompq == 1) {
 
- 		q[i__ + (*n << 1)] = cs;
 
- 		q[i__ + *n * 3] = sn;
 
- 	    } else if (icompq == 2) {
 
- 		work[i__] = cs;
 
- 		work[nm1 + i__] = -sn;
 
- 	    }
 
- /* L10: */
 
- 	}
 
-     }
 
- /*     If ICOMPQ = 0, use DLASDQ to compute the singular values. */
 
-     if (icompq == 0) {
 
- 	dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
 
- 		vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
 
- 		wstart], info);
 
- 	goto L40;
 
-     }
 
- /*     If N is smaller than the minimum divide size SMLSIZ, then solve */
 
- /*     the problem with another solver. */
 
-     if (*n <= smlsiz) {
 
- 	if (icompq == 2) {
 
- 	    dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
 
- 	    dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
 
- 	    dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
 
- , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
 
- 		    wstart], info);
 
- 	} else if (icompq == 1) {
 
- 	    iu = 1;
 
- 	    ivt = iu + *n;
 
- 	    dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
 
- 	    dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
 
- 	    dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
 
- 		    qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
 
- 		    iu + (qstart - 1) * *n], n, &work[wstart], info);
 
- 	}
 
- 	goto L40;
 
-     }
 
-     if (icompq == 2) {
 
- 	dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
 
- 	dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
 
-     }
 
- /*     Scale. */
 
-     orgnrm = dlanst_("M", n, &d__[1], &e[1]);
 
-     if (orgnrm == 0.) {
 
- 	return 0;
 
-     }
 
-     dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
 
-     dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
 
- 	    ierr);
 
-     eps = dlamch_("Epsilon");
 
-     mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) / 
 
- 	    log(2.)) + 1;
 
-     smlszp = smlsiz + 1;
 
-     if (icompq == 1) {
 
- 	iu = 1;
 
- 	ivt = smlsiz + 1;
 
- 	difl = ivt + smlszp;
 
- 	difr = difl + mlvl;
 
- 	z__ = difr + (mlvl << 1);
 
- 	ic = z__ + mlvl;
 
- 	is = ic + 1;
 
- 	poles = is + 1;
 
- 	givnum = poles + (mlvl << 1);
 
- 	k = 1;
 
- 	givptr = 2;
 
- 	perm = 3;
 
- 	givcol = perm + mlvl;
 
-     }
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if ((d__1 = d__[i__], abs(d__1)) < eps) {
 
- 	    d__[i__] = d_sign(&eps, &d__[i__]);
 
- 	}
 
- /* L20: */
 
-     }
 
-     start = 1;
 
-     sqre = 0;
 
-     i__1 = nm1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
 
- /*        Subproblem found. First determine its size and then */
 
- /*        apply divide and conquer on it. */
 
- 	    if (i__ < nm1) {
 
- /*        A subproblem with E(I) small for I < NM1. */
 
- 		nsize = i__ - start + 1;
 
- 	    } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
 
- /*        A subproblem with E(NM1) not too small but I = NM1. */
 
- 		nsize = *n - start + 1;
 
- 	    } else {
 
- /*        A subproblem with E(NM1) small. This implies an */
 
- /*        1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
 
- /*        first. */
 
- 		nsize = i__ - start + 1;
 
- 		if (icompq == 2) {
 
- 		    u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);
 
- 		    vt[*n + *n * vt_dim1] = 1.;
 
- 		} else if (icompq == 1) {
 
- 		    q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);
 
- 		    q[*n + (smlsiz + qstart - 1) * *n] = 1.;
 
- 		}
 
- 		d__[*n] = (d__1 = d__[*n], abs(d__1));
 
- 	    }
 
- 	    if (icompq == 2) {
 
- 		dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start + 
 
- 			start * u_dim1], ldu, &vt[start + start * vt_dim1], 
 
- 			ldvt, &smlsiz, &iwork[1], &work[wstart], info);
 
- 	    } else {
 
- 		dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
 
- 			start], &q[start + (iu + qstart - 2) * *n], n, &q[
 
- 			start + (ivt + qstart - 2) * *n], &iq[start + k * *n], 
 
- 			 &q[start + (difl + qstart - 2) * *n], &q[start + (
 
- 			difr + qstart - 2) * *n], &q[start + (z__ + qstart - 
 
- 			2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
 
- 			start + givptr * *n], &iq[start + givcol * *n], n, &
 
- 			iq[start + perm * *n], &q[start + (givnum + qstart - 
 
- 			2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
 
- 			start + (is + qstart - 2) * *n], &work[wstart], &
 
- 			iwork[1], info);
 
- 		if (*info != 0) {
 
- 		    return 0;
 
- 		}
 
- 	    }
 
- 	    start = i__ + 1;
 
- 	}
 
- /* L30: */
 
-     }
 
- /*     Unscale */
 
-     dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
 
- L40:
 
- /*     Use Selection Sort to minimize swaps of singular vectors */
 
-     i__1 = *n;
 
-     for (ii = 2; ii <= i__1; ++ii) {
 
- 	i__ = ii - 1;
 
- 	kk = i__;
 
- 	p = d__[i__];
 
- 	i__2 = *n;
 
- 	for (j = ii; j <= i__2; ++j) {
 
- 	    if (d__[j] > p) {
 
- 		kk = j;
 
- 		p = d__[j];
 
- 	    }
 
- /* L50: */
 
- 	}
 
- 	if (kk != i__) {
 
- 	    d__[kk] = d__[i__];
 
- 	    d__[i__] = p;
 
- 	    if (icompq == 1) {
 
- 		iq[i__] = kk;
 
- 	    } else if (icompq == 2) {
 
- 		dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
 
- 			c__1);
 
- 		dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
 
- 	    }
 
- 	} else if (icompq == 1) {
 
- 	    iq[i__] = i__;
 
- 	}
 
- /* L60: */
 
-     }
 
- /*     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
 
-     if (icompq == 1) {
 
- 	if (iuplo == 1) {
 
- 	    iq[*n] = 1;
 
- 	} else {
 
- 	    iq[*n] = 0;
 
- 	}
 
-     }
 
- /*     If B is lower bidiagonal, update U by those Givens rotations */
 
- /*     which rotated B to be upper bidiagonal */
 
-     if (iuplo == 2 && icompq == 2) {
 
- 	dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
 
-     }
 
-     return 0;
 
- /*     End of DBDSDC */
 
- } /* dbdsdc_ */
 
 
  |