starpu.texi 145 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance options:: Performance options worth knowing
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. These steps require to run autoconf and automake to generate the
  195. @code{./configure} script. This can be done by calling
  196. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  197. higher. You will also need makeinfo.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * More examples:: More examples shipped with StarPU
  338. @end menu
  339. @node Compiling and linking options
  340. @section Compiling and linking options
  341. Let's suppose StarPU has been installed in the directory
  342. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  343. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  344. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  345. libraries at runtime.
  346. @example
  347. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  348. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  349. @end example
  350. The Makefile could for instance contain the following lines to define which
  351. options must be given to the compiler and to the linker:
  352. @cartouche
  353. @example
  354. CFLAGS += $$(pkg-config --cflags libstarpu)
  355. LDFLAGS += $$(pkg-config --libs libstarpu)
  356. @end example
  357. @end cartouche
  358. @node Hello World
  359. @section Hello World
  360. @menu
  361. * Required Headers::
  362. * Defining a Codelet::
  363. * Submitting a Task::
  364. * Execution of Hello World::
  365. @end menu
  366. In this section, we show how to implement a simple program that submits a task to StarPU.
  367. @node Required Headers
  368. @subsection Required Headers
  369. The @code{starpu.h} header should be included in any code using StarPU.
  370. @cartouche
  371. @smallexample
  372. #include <starpu.h>
  373. @end smallexample
  374. @end cartouche
  375. @node Defining a Codelet
  376. @subsection Defining a Codelet
  377. @cartouche
  378. @smallexample
  379. struct params @{
  380. int i;
  381. float f;
  382. @};
  383. void cpu_func(void *buffers[], void *cl_arg)
  384. @{
  385. struct params *params = cl_arg;
  386. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  387. @}
  388. starpu_codelet cl =
  389. @{
  390. .where = STARPU_CPU,
  391. .cpu_func = cpu_func,
  392. .nbuffers = 0
  393. @};
  394. @end smallexample
  395. @end cartouche
  396. A codelet is a structure that represents a computational kernel. Such a codelet
  397. may contain an implementation of the same kernel on different architectures
  398. (e.g. CUDA, Cell's SPU, x86, ...).
  399. The @code{nbuffers} field specifies the number of data buffers that are
  400. manipulated by the codelet: here the codelet does not access or modify any data
  401. that is controlled by our data management library. Note that the argument
  402. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  403. structure) does not count as a buffer since it is not managed by our data
  404. management library, but just contain trivial parameters.
  405. @c TODO need a crossref to the proper description of "where" see bla for more ...
  406. We create a codelet which may only be executed on the CPUs. The @code{where}
  407. field is a bitmask that defines where the codelet may be executed. Here, the
  408. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  409. (@pxref{Codelets and Tasks} for more details on this field).
  410. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  411. which @emph{must} have the following prototype:
  412. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  413. In this example, we can ignore the first argument of this function which gives a
  414. description of the input and output buffers (e.g. the size and the location of
  415. the matrices) since there is none.
  416. The second argument is a pointer to a buffer passed as an
  417. argument to the codelet by the means of the @code{cl_arg} field of the
  418. @code{starpu_task} structure.
  419. @c TODO rewrite so that it is a little clearer ?
  420. Be aware that this may be a pointer to a
  421. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  422. if the codelet modifies this buffer, there is no guarantee that the initial
  423. buffer will be modified as well: this for instance implies that the buffer
  424. cannot be used as a synchronization medium. If synchronization is needed, data
  425. has to be registered to StarPU, see @ref{Scaling a Vector}.
  426. @node Submitting a Task
  427. @subsection Submitting a Task
  428. @cartouche
  429. @smallexample
  430. void callback_func(void *callback_arg)
  431. @{
  432. printf("Callback function (arg %x)\n", callback_arg);
  433. @}
  434. int main(int argc, char **argv)
  435. @{
  436. /* @b{initialize StarPU} */
  437. starpu_init(NULL);
  438. struct starpu_task *task = starpu_task_create();
  439. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  440. struct params params = @{ 1, 2.0f @};
  441. task->cl_arg = &params;
  442. task->cl_arg_size = sizeof(params);
  443. task->callback_func = callback_func;
  444. task->callback_arg = 0x42;
  445. /* @b{starpu_task_submit will be a blocking call} */
  446. task->synchronous = 1;
  447. /* @b{submit the task to StarPU} */
  448. starpu_task_submit(task);
  449. /* @b{terminate StarPU} */
  450. starpu_shutdown();
  451. return 0;
  452. @}
  453. @end smallexample
  454. @end cartouche
  455. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  456. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  457. be submitted after the termination of StarPU by a call to
  458. @code{starpu_shutdown}.
  459. In the example above, a task structure is allocated by a call to
  460. @code{starpu_task_create}. This function only allocates and fills the
  461. corresponding structure with the default settings (@pxref{starpu_task_create}),
  462. but it does not submit the task to StarPU.
  463. @c not really clear ;)
  464. The @code{cl} field is a pointer to the codelet which the task will
  465. execute: in other words, the codelet structure describes which computational
  466. kernel should be offloaded on the different architectures, and the task
  467. structure is a wrapper containing a codelet and the piece of data on which the
  468. codelet should operate.
  469. The optional @code{cl_arg} field is a pointer to a buffer (of size
  470. @code{cl_arg_size}) with some parameters for the kernel
  471. described by the codelet. For instance, if a codelet implements a computational
  472. kernel that multiplies its input vector by a constant, the constant could be
  473. specified by the means of this buffer, instead of registering it as a StarPU
  474. data.
  475. Once a task has been executed, an optional callback function is be called.
  476. While the computational kernel could be offloaded on various architectures, the
  477. callback function is always executed on a CPU. The @code{callback_arg}
  478. pointer is passed as an argument of the callback. The prototype of a callback
  479. function must be:
  480. @code{void (*callback_function)(void *);}
  481. If the @code{synchronous} field is non-zero, task submission will be
  482. synchronous: the @code{starpu_task_submit} function will not return until the
  483. task was executed. Note that the @code{starpu_shutdown} method does not
  484. guarantee that asynchronous tasks have been executed before it returns,
  485. @code{starpu_task_wait_for_all} can be used to that effect..
  486. @node Execution of Hello World
  487. @subsection Execution of Hello World
  488. @smallexample
  489. % make hello_world
  490. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  491. % ./hello_world
  492. Hello world (params = @{1, 2.000000@} )
  493. Callback function (arg 42)
  494. @end smallexample
  495. @node Scaling a Vector
  496. @section Manipulating Data: Scaling a Vector
  497. The previous example has shown how to submit tasks. In this section,
  498. we show how StarPU tasks can manipulate data. The full source code for
  499. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  500. @menu
  501. * Source code of Vector Scaling::
  502. * Execution of Vector Scaling::
  503. @end menu
  504. @node Source code of Vector Scaling
  505. @subsection Source code of Vector Scaling
  506. Programmers can describe the data layout of their application so that StarPU is
  507. responsible for enforcing data coherency and availability across the machine.
  508. Instead of handling complex (and non-portable) mechanisms to perform data
  509. movements, programmers only declare which piece of data is accessed and/or
  510. modified by a task, and StarPU makes sure that when a computational kernel
  511. starts somewhere (e.g. on a GPU), its data are available locally.
  512. Before submitting those tasks, the programmer first needs to declare the
  513. different pieces of data to StarPU using the @code{starpu_*_data_register}
  514. functions. To ease the development of applications for StarPU, it is possible
  515. to describe multiple types of data layout. A type of data layout is called an
  516. @b{interface}. There are different predefined interfaces available in StarPU:
  517. here we will consider the @b{vector interface}.
  518. The following lines show how to declare an array of @code{NX} elements of type
  519. @code{float} using the vector interface:
  520. @cartouche
  521. @smallexample
  522. float vector[NX];
  523. starpu_data_handle vector_handle;
  524. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  525. sizeof(vector[0]));
  526. @end smallexample
  527. @end cartouche
  528. The first argument, called the @b{data handle}, is an opaque pointer which
  529. designates the array in StarPU. This is also the structure which is used to
  530. describe which data is used by a task. The second argument is the node number
  531. where the data originally resides. Here it is 0 since the @code{vector} array is in
  532. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  533. the number of elements in the vector and the size of each element.
  534. The following shows how to construct a StarPU task that will manipulate the
  535. vector and a constant factor.
  536. @cartouche
  537. @smallexample
  538. float factor = 3.14;
  539. struct starpu_task *task = starpu_task_create();
  540. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  541. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  542. task->buffers[0].mode = STARPU_RW;
  543. task->cl_arg = &factor;
  544. task->cl_arg_size = sizeof(factor);
  545. task->synchronous = 1;
  546. starpu_task_submit(task);
  547. @end smallexample
  548. @end cartouche
  549. Since the factor is a mere constant float value parameter,
  550. it does not need a preliminary registration, and
  551. can just be passed through the @code{cl_arg} pointer like in the previous
  552. example. The vector parameter is described by its handle.
  553. There are two fields in each element of the @code{buffers} array.
  554. @code{handle} is the handle of the data, and @code{mode} specifies how the
  555. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  556. write-only and @code{STARPU_RW} for read and write access).
  557. The definition of the codelet can be written as follows:
  558. @cartouche
  559. @smallexample
  560. void scal_cpu_func(void *buffers[], void *cl_arg)
  561. @{
  562. unsigned i;
  563. float *factor = cl_arg;
  564. /* length of the vector */
  565. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  566. /* local copy of the vector pointer */
  567. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  568. for (i = 0; i < n; i++)
  569. val[i] *= *factor;
  570. @}
  571. starpu_codelet cl = @{
  572. .where = STARPU_CPU,
  573. .cpu_func = scal_cpu_func,
  574. .nbuffers = 1
  575. @};
  576. @end smallexample
  577. @end cartouche
  578. The first argument is an array that gives
  579. a description of all the buffers passed in the @code{task->buffers}@ array. The
  580. size of this array is given by the @code{nbuffers} field of the codelet
  581. structure. For the sake of genericity, this array contains pointers to the
  582. different interfaces describing each buffer. In the case of the @b{vector
  583. interface}, the location of the vector (resp. its length) is accessible in the
  584. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  585. read-write fashion, any modification will automatically affect future accesses
  586. to this vector made by other tasks.
  587. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  588. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  589. constant factor from this pointer.
  590. @node Execution of Vector Scaling
  591. @subsection Execution of Vector Scaling
  592. @smallexample
  593. % make vector_scal
  594. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  595. % ./vector_scal
  596. 0.000000 3.000000 6.000000 9.000000 12.000000
  597. @end smallexample
  598. @node Vector Scaling on an Hybrid CPU/GPU Machine
  599. @section Vector Scaling on an Hybrid CPU/GPU Machine
  600. Contrary to the previous examples, the task submitted in this example may not
  601. only be executed by the CPUs, but also by a CUDA device.
  602. @menu
  603. * Definition of the CUDA Kernel::
  604. * Definition of the OpenCL Kernel::
  605. * Definition of the Main Code::
  606. * Execution of Hybrid Vector Scaling::
  607. @end menu
  608. @node Definition of the CUDA Kernel
  609. @subsection Definition of the CUDA Kernel
  610. The CUDA implementation can be written as follows. It needs to be
  611. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  612. driver.
  613. @cartouche
  614. @smallexample
  615. #include <starpu.h>
  616. static __global__ void vector_mult_cuda(float *val, unsigned n,
  617. float factor)
  618. @{
  619. unsigned i;
  620. if (i < n)
  621. val[i] *= factor;
  622. @}
  623. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  624. @{
  625. float *factor = (float *)_args;
  626. /* length of the vector */
  627. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  628. /* local copy of the vector pointer */
  629. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  630. unsigned threads_per_block = 64;
  631. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  632. @i{ vector_mult_cuda<<<nblocks,threads_per_block>>>(val, n, *factor);}
  633. @i{ cudaThreadSynchronize();}
  634. @}
  635. @end smallexample
  636. @end cartouche
  637. @node Definition of the OpenCL Kernel
  638. @subsection Definition of the OpenCL Kernel
  639. The OpenCL implementation can be written as follows. StarPU provides
  640. tools to compile a OpenCL kernel stored in a file.
  641. @cartouche
  642. @smallexample
  643. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  644. @{
  645. const int i = get_global_id(0);
  646. if (i < nx) @{
  647. val[i] *= factor;
  648. @}
  649. @}
  650. @end smallexample
  651. @end cartouche
  652. @cartouche
  653. @smallexample
  654. #include <starpu.h>
  655. @i{#include <starpu_opencl.h>}
  656. @i{extern struct starpu_opencl_program programs;}
  657. void scal_opencl_func(void *buffers[], void *_args)
  658. @{
  659. float *factor = _args;
  660. @i{ int id, devid, err;}
  661. @i{ cl_kernel kernel;}
  662. @i{ cl_command_queue queue;}
  663. /* length of the vector */
  664. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  665. /* local copy of the vector pointer */
  666. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  667. @i{ id = starpu_worker_get_id();}
  668. @i{ devid = starpu_worker_get_devid(id);}
  669. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  670. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  671. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  672. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  673. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  674. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  675. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  676. @i{ @{}
  677. @i{ size_t global=1;}
  678. @i{ size_t local=1;}
  679. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  680. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  681. @i{ @}}
  682. @i{ clFinish(queue);}
  683. @i{ starpu_opencl_release_kernel(kernel);}
  684. @}
  685. @end smallexample
  686. @end cartouche
  687. @node Definition of the Main Code
  688. @subsection Definition of the Main Code
  689. The CPU implementation is the same as in the previous section.
  690. Here is the source of the main application. You can notice the value of the
  691. field @code{where} for the codelet. We specify
  692. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  693. can be executed either on a CPU or on a CUDA or an OpenCL device.
  694. @cartouche
  695. @smallexample
  696. #include <starpu.h>
  697. #define NX 2048
  698. extern void scal_cuda_func(void *buffers[], void *_args);
  699. extern void scal_cpu_func(void *buffers[], void *_args);
  700. extern void scal_opencl_func(void *buffers[], void *_args);
  701. /* @b{Definition of the codelet} */
  702. static starpu_codelet cl = @{
  703. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  704. /* @b{on a CUDA device, or on an OpenCL device} */
  705. .cuda_func = scal_cuda_func;
  706. .cpu_func = scal_cpu_func;
  707. .opencl_func = scal_opencl_func;
  708. .nbuffers = 1;
  709. @}
  710. #ifdef STARPU_USE_OPENCL
  711. /* @b{The compiled version of the OpenCL program} */
  712. struct starpu_opencl_program programs;
  713. #endif
  714. int main(int argc, char **argv)
  715. @{
  716. float *vector;
  717. int i, ret;
  718. float factor=3.0;
  719. struct starpu_task *task;
  720. starpu_data_handle vector_handle;
  721. starpu_init(NULL); /* @b{Initialising StarPU} */
  722. #ifdef STARPU_USE_OPENCL
  723. starpu_opencl_load_opencl_from_file(
  724. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  725. #endif
  726. vector = malloc(NX*sizeof(vector[0]));
  727. assert(vector);
  728. for(i=0 ; i<NX ; i++) vector[i] = i;
  729. @end smallexample
  730. @end cartouche
  731. @cartouche
  732. @smallexample
  733. /* @b{Registering data within StarPU} */
  734. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  735. NX, sizeof(vector[0]));
  736. /* @b{Definition of the task} */
  737. task = starpu_task_create();
  738. task->cl = &cl;
  739. task->buffers[0].handle = vector_handle;
  740. task->buffers[0].mode = STARPU_RW;
  741. task->cl_arg = &factor;
  742. task->cl_arg_size = sizeof(factor);
  743. @end smallexample
  744. @end cartouche
  745. @cartouche
  746. @smallexample
  747. /* @b{Submitting the task} */
  748. ret = starpu_task_submit(task);
  749. if (ret == -ENODEV) @{
  750. fprintf(stderr, "No worker may execute this task\n");
  751. return 1;
  752. @}
  753. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  754. /* @b{Waiting for its termination} */
  755. starpu_task_wait_for_all();
  756. /* @b{Update the vector in RAM} */
  757. starpu_data_acquire(vector_handle, STARPU_R);
  758. @end smallexample
  759. @end cartouche
  760. @cartouche
  761. @smallexample
  762. /* @b{Access the data} */
  763. for(i=0 ; i<NX; i++) @{
  764. fprintf(stderr, "%f ", vector[i]);
  765. @}
  766. fprintf(stderr, "\n");
  767. /* @b{Release the data and shutdown StarPU} */
  768. starpu_data_release(vector_handle);
  769. starpu_shutdown();
  770. return 0;
  771. @}
  772. @end smallexample
  773. @end cartouche
  774. @node Execution of Hybrid Vector Scaling
  775. @subsection Execution of Hybrid Vector Scaling
  776. The Makefile given at the beginning of the section must be extended to
  777. give the rules to compile the CUDA source code. Note that the source
  778. file of the OpenCL kernel does not need to be compiled now, it will
  779. be compiled at run-time when calling the function
  780. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  781. @cartouche
  782. @smallexample
  783. CFLAGS += $(shell pkg-config --cflags libstarpu)
  784. LDFLAGS += $(shell pkg-config --libs libstarpu)
  785. CC = gcc
  786. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  787. %.o: %.cu
  788. nvcc $(CFLAGS) $< -c $@
  789. clean:
  790. rm -f vector_scal *.o
  791. @end smallexample
  792. @end cartouche
  793. @smallexample
  794. % make
  795. @end smallexample
  796. and to execute it, with the default configuration:
  797. @smallexample
  798. % ./vector_scal
  799. 0.000000 3.000000 6.000000 9.000000 12.000000
  800. @end smallexample
  801. or for example, by disabling CPU devices:
  802. @smallexample
  803. % STARPU_NCPUS=0 ./vector_scal
  804. 0.000000 3.000000 6.000000 9.000000 12.000000
  805. @end smallexample
  806. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  807. see @ref{Using accelerators}):
  808. @smallexample
  809. % STARPU_NCUDA=0 ./vector_scal
  810. 0.000000 3.000000 6.000000 9.000000 12.000000
  811. @end smallexample
  812. @node Task and Worker Profiling
  813. @section Task and Worker Profiling
  814. A full example showing how to use the profiling API is available in
  815. the StarPU sources in the directory @code{examples/profiling/}.
  816. @cartouche
  817. @smallexample
  818. struct starpu_task *task = starpu_task_create();
  819. task->cl = &cl;
  820. task->synchronous = 1;
  821. /* We will destroy the task structure by hand so that we can
  822. * query the profiling info before the task is destroyed. */
  823. task->destroy = 0;
  824. /* Submit and wait for completion (since synchronous was set to 1) */
  825. starpu_task_submit(task);
  826. /* The task is finished, get profiling information */
  827. struct starpu_task_profiling_info *info = task->profiling_info;
  828. /* How much time did it take before the task started ? */
  829. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  830. /* How long was the task execution ? */
  831. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  832. /* We don't need the task structure anymore */
  833. starpu_task_destroy(task);
  834. @end smallexample
  835. @end cartouche
  836. @cartouche
  837. @smallexample
  838. /* Display the occupancy of all workers during the test */
  839. int worker;
  840. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  841. @{
  842. struct starpu_worker_profiling_info worker_info;
  843. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  844. STARPU_ASSERT(!ret);
  845. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  846. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  847. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  848. float executing_ratio = 100.0*executing_time/total_time;
  849. float sleeping_ratio = 100.0*sleeping_time/total_time;
  850. char workername[128];
  851. starpu_worker_get_name(worker, workername, 128);
  852. fprintf(stderr, "Worker %s:\n", workername);
  853. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  854. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  855. executing_ratio);
  856. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  857. sleeping_ratio);
  858. @}
  859. @end smallexample
  860. @end cartouche
  861. @node Partitioning Data
  862. @section Partitioning Data
  863. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  864. @cartouche
  865. @smallexample
  866. int vector[NX];
  867. starpu_data_handle handle;
  868. /* Declare data to StarPU */
  869. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  870. /* Partition the vector in PARTS sub-vectors */
  871. starpu_filter f =
  872. @{
  873. .filter_func = starpu_block_filter_func_vector,
  874. .nchildren = PARTS,
  875. .get_nchildren = NULL,
  876. .get_child_ops = NULL
  877. @};
  878. starpu_data_partition(handle, &f);
  879. @end smallexample
  880. @end cartouche
  881. @cartouche
  882. @smallexample
  883. /* Submit a task on each sub-vector */
  884. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  885. /* Get subdata number i (there is only 1 dimension) */
  886. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  887. struct starpu_task *task = starpu_task_create();
  888. task->buffers[0].handle = sub_handle;
  889. task->buffers[0].mode = STARPU_RW;
  890. task->cl = &cl;
  891. task->synchronous = 1;
  892. task->cl_arg = &factor;
  893. task->cl_arg_size = sizeof(factor);
  894. starpu_task_submit(task);
  895. @}
  896. @end smallexample
  897. @end cartouche
  898. Partitioning can be applied several times, see
  899. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  900. @node Performance model example
  901. @section Performance model example
  902. To achieve good scheduling, StarPU scheduling policies need to be able to
  903. estimate in advance the duration of a task. This is done by giving to codelets a
  904. performance model. There are several kinds of performance models.
  905. @itemize
  906. @item
  907. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  908. see for instance
  909. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  910. @item
  911. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  912. given set of data input/output sizes, the performance will always be about the
  913. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  914. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  915. few different sets of data input/output sizes. StarPU will then keep record of
  916. the average time of previous executions on the various processing units, and use
  917. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  918. for further executions. The following is a small code example.
  919. @cartouche
  920. @smallexample
  921. static struct starpu_perfmodel_t mult_perf_model = @{
  922. .type = STARPU_HISTORY_BASED,
  923. .symbol = "mult_perf_model"
  924. @};
  925. starpu_codelet cl = @{
  926. .where = STARPU_CPU,
  927. .cpu_func = cpu_mult,
  928. .nbuffers = 3,
  929. /* for the scheduling policy to be able to use performance models */
  930. .model = &mult_perf_model
  931. @};
  932. @end smallexample
  933. @end cartouche
  934. @item
  935. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  936. type). This still assumes performance regularity, but can work with various data
  937. input sizes, by applying a*n^b+c regression over observed execution times.
  938. @end itemize
  939. @node Theoretical lower bound on execution time
  940. @section Theoretical lower bound on execution time
  941. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  942. bound for the execution time of a whole set of tasks. See for
  943. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  944. call @code{starpu_bound_start}, and after complete execution, call
  945. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  946. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  947. problem corresponding to the schedule of your tasks. Run it through
  948. @code{lp_solve} or any other linear programming solver, and that will give you a
  949. lower bound for the total execution time of your tasks. If StarPU was compiled
  950. with the glpk library installed, @code{starpu_bound_compute} can be used to
  951. solve it immediately and get the optimized minimum. Its @code{integer}
  952. parameter allows to decide whether integer resolution should be computed
  953. and returned.
  954. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  955. dependencies into account. It must be understood that the linear programming
  956. problem size is quadratic with the number of tasks and thus the time to solve it
  957. will be very long, it could be minutes for just a few dozen tasks. You should
  958. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  959. problem to MPS format and then use a better solver, @code{glpsol} might be
  960. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  961. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  962. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  963. of @code{lp_solve}. For instance, we often just use
  964. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  965. the @code{-gr} option can also be quite useful.
  966. Setting @code{deps} to 0 will only take into account the actual computations
  967. on processing units. It however still properly takes into account the varying
  968. performances of kernels and processing units, which is quite more accurate than
  969. just comparing StarPU performances with the fastest of the kernels being used.
  970. The @code{prio} parameter tells StarPU whether to simulate taking into account
  971. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  972. tasks before less prioritized tasks, to check to which extend this results
  973. to a less optimal solution. This increases even more computation time.
  974. Note that for simplicity, all this however doesn't take into account data
  975. transfers, which are assumed to be completely overlapped.
  976. @node More examples
  977. @section More examples
  978. More examples are available in the StarPU sources in the @code{examples/}
  979. directory. Simple examples include:
  980. @table @asis
  981. @item @code{incrementer/}:
  982. Trivial incrementation test.
  983. @item @code{basic_examples/}:
  984. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  985. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  986. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  987. interface, and an example using the variable data interface.
  988. @item @code{matvecmult/}:
  989. OpenCL example from NVidia, adapted to StarPU.
  990. @item @code{axpy/}:
  991. AXPY CUBLAS operation adapted to StarPU.
  992. @item @code{fortran/}:
  993. Example of Fortran bindings.
  994. @end table
  995. More advanced examples include:
  996. @table @asis
  997. @item @code{filters/}:
  998. Examples using filters, as shown in @ref{Partitioning Data}.
  999. @item @code{lu/}:
  1000. LU matrix factorization.
  1001. @end table
  1002. @c ---------------------------------------------------------------------
  1003. @c Performance options
  1004. @c ---------------------------------------------------------------------
  1005. @node Performance options
  1006. @chapter Performance options worth knowing
  1007. TODO: explain why execution should be tried with
  1008. @code{STARPU_PREFETCH=1 STARPU_SCHED=dmda}, when to use
  1009. @code{STARPU_CALIBRATE=2} to force re-calibration, and how to play with
  1010. @code{STARPU_BETA=2} or more.
  1011. @c ---------------------------------------------------------------------
  1012. @c Performance feedback
  1013. @c ---------------------------------------------------------------------
  1014. @node Performance feedback
  1015. @chapter Performance feedback
  1016. @menu
  1017. * On-line:: On-line performance feedback
  1018. * Off-line:: Off-line performance feedback
  1019. @end menu
  1020. @node On-line
  1021. @section On-line performance feedback
  1022. @menu
  1023. * Enabling monitoring:: Enabling on-line performance monitoring
  1024. * Task feedback:: Per-task feedback
  1025. * Codelet feedback:: Per-codelet feedback
  1026. * Worker feedback:: Per-worker feedback
  1027. * Bus feedback:: Bus-related feedback
  1028. @end menu
  1029. @node Enabling monitoring
  1030. @subsection Enabling on-line performance monitoring
  1031. In order to enable online performance monitoring, the application must call
  1032. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1033. detect whether monitoring is already enabled or not by calling
  1034. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1035. previously collected feedback.
  1036. Likewise, performance monitoring is stopped by calling
  1037. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1038. does not reset the performance counters so that the application may consult
  1039. them later on.
  1040. More details about the performance monitoring API are available in section
  1041. @ref{Profiling API}.
  1042. @node Task feedback
  1043. @subsection Per-task feedback
  1044. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1045. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1046. structure when a task terminates.
  1047. This structure is automatically destroyed when the task structure is destroyed,
  1048. either automatically or by calling @code{starpu_task_destroy}.
  1049. The @code{starpu_task_profiling_info} structure indicates the date when the
  1050. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1051. terminated (@code{end_time}), relative to the initialization of
  1052. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1053. that has executed the task (@code{workerid}).
  1054. These date are stored as @code{timespec} structures which the user may convert
  1055. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1056. function.
  1057. It it worth noting that the application may directly access this structure from
  1058. the callback executed at the end of the task. The @code{starpu_task} structure
  1059. associated to the callback currently being executed is indeed accessible with
  1060. the @code{starpu_get_current_task()} function.
  1061. @node Codelet feedback
  1062. @subsection Per-codelet feedback
  1063. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1064. an array of counters. The i-th entry of the array is incremented every time a
  1065. task implementing the codelet is executed on the i-th worker.
  1066. This array is not reinitialized when profiling is enabled or disabled.
  1067. @node Worker feedback
  1068. @subsection Per-worker feedback
  1069. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1070. function is a @code{starpu_worker_profiling_info} structure that gives
  1071. statistics about the specified worker. This structure specifies when StarPU
  1072. started collecting profiling information for that worker (@code{start_time}),
  1073. the duration of the profiling measurement interval (@code{total_time}), the
  1074. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1075. because there is no task to execute at all (@code{sleeping_time}), and the
  1076. number of tasks that were executed while profiling was enabled.
  1077. These values give an estimation of the proportion of time spent do real work,
  1078. and the time spent either sleeping because there are not enough executable
  1079. tasks or simply wasted in pure StarPU overhead.
  1080. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1081. information associated to a worker.
  1082. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1083. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1084. generate a graphic showing the evolution of these values during the time, for
  1085. the different workers.
  1086. @node Bus feedback
  1087. @subsection Bus-related feedback
  1088. TODO
  1089. @c how to enable/disable performance monitoring
  1090. @c what kind of information do we get ?
  1091. @node Off-line
  1092. @section Off-line performance feedback
  1093. @menu
  1094. * Generating traces:: Generating traces with FxT
  1095. * Gantt diagram:: Creating a Gantt Diagram
  1096. * DAG:: Creating a DAG with graphviz
  1097. * starpu-top:: Monitoring activity
  1098. @end menu
  1099. @node Generating traces
  1100. @subsection Generating traces with FxT
  1101. StarPU can use the FxT library (see
  1102. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1103. with a limited runtime overhead.
  1104. You can either get the FxT library from CVS (autotools are required):
  1105. @example
  1106. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1107. % ./bootstrap
  1108. @end example
  1109. If autotools are not available on your machine, or if you prefer to do so,
  1110. FxT's code is also available as a tarball:
  1111. @example
  1112. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1113. @end example
  1114. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1115. done following the standard procedure:
  1116. @example
  1117. % ./configure --prefix=$FXTDIR
  1118. % make
  1119. % make install
  1120. @end example
  1121. In order to have StarPU to generate traces, StarPU should be configured with
  1122. the @code{--with-fxt} option:
  1123. @example
  1124. $ ./configure --with-fxt=$FXTDIR
  1125. @end example
  1126. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1127. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1128. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1129. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1130. @code{/tmp/} directory by default, or by the directory specified by
  1131. the @code{STARPU_FXT_PREFIX} environment variable.
  1132. @node Gantt diagram
  1133. @subsection Creating a Gantt Diagram
  1134. When the FxT trace file @code{filename} has been generated, it is possible to
  1135. generate a trace in the Paje format by calling:
  1136. @example
  1137. % starpu_fxt_tool -i filename
  1138. @end example
  1139. This will create a @code{paje.trace} file in the current directory that can be
  1140. inspected with the ViTE trace visualizing open-source tool. More information
  1141. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1142. possible to open the @code{paje.trace} file with ViTE by using the following
  1143. command:
  1144. @example
  1145. % vite paje.trace
  1146. @end example
  1147. @node DAG
  1148. @subsection Creating a DAG with graphviz
  1149. When the FxT trace file @code{filename} has been generated, it is possible to
  1150. generate a task graph in the DOT format by calling:
  1151. @example
  1152. $ starpu_fxt_tool -i filename
  1153. @end example
  1154. This will create a @code{dag.dot} file in the current directory. This file is a
  1155. task graph described using the DOT language. It is possible to get a
  1156. graphical output of the graph by using the graphviz library:
  1157. @example
  1158. $ dot -Tpdf dag.dot -o output.pdf
  1159. @end example
  1160. @node starpu-top
  1161. @subsection Monitoring activity
  1162. When the FxT trace file @code{filename} has been generated, it is possible to
  1163. generate a activity trace by calling:
  1164. @example
  1165. $ starpu_fxt_tool -i filename
  1166. @end example
  1167. This will create an @code{activity.data} file in the current
  1168. directory. A profile of the application showing the activity of StarPU
  1169. during the execution of the program can be generated:
  1170. @example
  1171. $ starpu_top.sh activity.data
  1172. @end example
  1173. This will create a file named @code{activity.eps} in the current directory.
  1174. This picture is composed of two parts.
  1175. The first part shows the activity of the different workers. The green sections
  1176. indicate which proportion of the time was spent executed kernels on the
  1177. processing unit. The red sections indicate the proportion of time spent in
  1178. StartPU: an important overhead may indicate that the granularity may be too
  1179. low, and that bigger tasks may be appropriate to use the processing unit more
  1180. efficiently. The black sections indicate that the processing unit was blocked
  1181. because there was no task to process: this may indicate a lack of parallelism
  1182. which may be alleviated by creating more tasks when it is possible.
  1183. The second part of the @code{activity.eps} picture is a graph showing the
  1184. evolution of the number of tasks available in the system during the execution.
  1185. Ready tasks are shown in black, and tasks that are submitted but not
  1186. schedulable yet are shown in grey.
  1187. @c ---------------------------------------------------------------------
  1188. @c MPI support
  1189. @c ---------------------------------------------------------------------
  1190. @node StarPU MPI support
  1191. @chapter StarPU MPI support
  1192. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1193. @c ---------------------------------------------------------------------
  1194. @c Configuration options
  1195. @c ---------------------------------------------------------------------
  1196. @node Configuring StarPU
  1197. @chapter Configuring StarPU
  1198. @menu
  1199. * Compilation configuration::
  1200. * Execution configuration through environment variables::
  1201. @end menu
  1202. @node Compilation configuration
  1203. @section Compilation configuration
  1204. The following arguments can be given to the @code{configure} script.
  1205. @menu
  1206. * Common configuration::
  1207. * Configuring workers::
  1208. * Advanced configuration::
  1209. @end menu
  1210. @node Common configuration
  1211. @subsection Common configuration
  1212. @menu
  1213. * --enable-debug::
  1214. * --enable-fast::
  1215. * --enable-verbose::
  1216. * --enable-coverage::
  1217. @end menu
  1218. @node --enable-debug
  1219. @subsubsection @code{--enable-debug}
  1220. @table @asis
  1221. @item @emph{Description}:
  1222. Enable debugging messages.
  1223. @end table
  1224. @node --enable-fast
  1225. @subsubsection @code{--enable-fast}
  1226. @table @asis
  1227. @item @emph{Description}:
  1228. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1229. @end table
  1230. @node --enable-verbose
  1231. @subsubsection @code{--enable-verbose}
  1232. @table @asis
  1233. @item @emph{Description}:
  1234. Augment the verbosity of the debugging messages.
  1235. @end table
  1236. @node --enable-coverage
  1237. @subsubsection @code{--enable-coverage}
  1238. @table @asis
  1239. @item @emph{Description}:
  1240. Enable flags for the @code{gcov} coverage tool.
  1241. @end table
  1242. @node Configuring workers
  1243. @subsection Configuring workers
  1244. @menu
  1245. * --enable-nmaxcpus::
  1246. * --disable-cpu::
  1247. * --enable-maxcudadev::
  1248. * --disable-cuda::
  1249. * --with-cuda-dir::
  1250. * --with-cuda-include-dir::
  1251. * --with-cuda-lib-dir::
  1252. * --enable-maxopencldev::
  1253. * --disable-opencl::
  1254. * --with-opencl-dir::
  1255. * --with-opencl-include-dir::
  1256. * --with-opencl-lib-dir::
  1257. * --enable-gordon::
  1258. * --with-gordon-dir::
  1259. @end menu
  1260. @node --enable-nmaxcpus
  1261. @subsubsection @code{--enable-nmaxcpus=<number>}
  1262. @table @asis
  1263. @item @emph{Description}:
  1264. Defines the maximum number of CPU cores that StarPU will support, then
  1265. available as the @code{STARPU_NMAXCPUS} macro.
  1266. @end table
  1267. @node --disable-cpu
  1268. @subsubsection @code{--disable-cpu}
  1269. @table @asis
  1270. @item @emph{Description}:
  1271. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1272. @end table
  1273. @node --enable-maxcudadev
  1274. @subsubsection @code{--enable-maxcudadev=<number>}
  1275. @table @asis
  1276. @item @emph{Description}:
  1277. Defines the maximum number of CUDA devices that StarPU will support, then
  1278. available as the @code{STARPU_MAXCUDADEVS} macro.
  1279. @end table
  1280. @node --disable-cuda
  1281. @subsubsection @code{--disable-cuda}
  1282. @table @asis
  1283. @item @emph{Description}:
  1284. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1285. @end table
  1286. @node --with-cuda-dir
  1287. @subsubsection @code{--with-cuda-dir=<path>}
  1288. @table @asis
  1289. @item @emph{Description}:
  1290. Specify the directory where CUDA is installed. This directory should notably contain
  1291. @code{include/cuda.h}.
  1292. @end table
  1293. @node --with-cuda-include-dir
  1294. @subsubsection @code{--with-cuda-include-dir=<path>}
  1295. @table @asis
  1296. @item @emph{Description}:
  1297. Specify the directory where CUDA headers are installed. This directory should
  1298. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1299. value given to @code{--with-cuda-dir}.
  1300. @end table
  1301. @node --with-cuda-lib-dir
  1302. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1303. @table @asis
  1304. @item @emph{Description}:
  1305. Specify the directory where the CUDA library is installed. This directory should
  1306. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1307. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1308. @end table
  1309. @node --enable-maxopencldev
  1310. @subsubsection @code{--enable-maxopencldev=<number>}
  1311. @table @asis
  1312. @item @emph{Description}:
  1313. Defines the maximum number of OpenCL devices that StarPU will support, then
  1314. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1315. @end table
  1316. @node --disable-opencl
  1317. @subsubsection @code{--disable-opencl}
  1318. @table @asis
  1319. @item @emph{Description}:
  1320. Disable the use of OpenCL, even if the SDK is detected.
  1321. @end table
  1322. @node --with-opencl-dir
  1323. @subsubsection @code{--with-opencl-dir=<path>}
  1324. @table @asis
  1325. @item @emph{Description}:
  1326. Specify the location of the OpenCL SDK. This directory should notably contain
  1327. @code{include/CL/cl.h}.
  1328. @end table
  1329. @node --with-opencl-include-dir
  1330. @subsubsection @code{--with-opencl-include-dir=<path>}
  1331. @table @asis
  1332. @item @emph{Description}:
  1333. Specify the location of OpenCL headers. This directory should notably contain
  1334. @code{CL/cl.h}. This defaults to
  1335. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1336. @end table
  1337. @node --with-opencl-lib-dir
  1338. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1339. @table @asis
  1340. @item @emph{Description}:
  1341. Specify the location of the OpenCL library. This directory should notably
  1342. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1343. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1344. @end table
  1345. @node --enable-gordon
  1346. @subsubsection @code{--enable-gordon}
  1347. @table @asis
  1348. @item @emph{Description}:
  1349. Enable the use of the Gordon runtime for Cell SPUs.
  1350. @c TODO: rather default to enabled when detected
  1351. @end table
  1352. @node --with-gordon-dir
  1353. @subsubsection @code{--with-gordon-dir=<path>}
  1354. @table @asis
  1355. @item @emph{Description}:
  1356. Specify the location of the Gordon SDK.
  1357. @end table
  1358. @node Advanced configuration
  1359. @subsection Advanced configuration
  1360. @menu
  1361. * --enable-perf-debug::
  1362. * --enable-model-debug::
  1363. * --enable-stats::
  1364. * --enable-maxbuffers::
  1365. * --enable-allocation-cache::
  1366. * --enable-opengl-render::
  1367. * --enable-blas-lib::
  1368. * --with-magma::
  1369. * --with-fxt::
  1370. * --with-perf-model-dir::
  1371. * --with-mpicc::
  1372. * --with-goto-dir::
  1373. * --with-atlas-dir::
  1374. * --with-mkl-cflags::
  1375. * --with-mkl-ldflags::
  1376. @end menu
  1377. @node --enable-perf-debug
  1378. @subsubsection @code{--enable-perf-debug}
  1379. @table @asis
  1380. @item @emph{Description}:
  1381. Enable performance debugging.
  1382. @end table
  1383. @node --enable-model-debug
  1384. @subsubsection @code{--enable-model-debug}
  1385. @table @asis
  1386. @item @emph{Description}:
  1387. Enable performance model debugging.
  1388. @end table
  1389. @node --enable-stats
  1390. @subsubsection @code{--enable-stats}
  1391. @table @asis
  1392. @item @emph{Description}:
  1393. Enable statistics.
  1394. @end table
  1395. @node --enable-maxbuffers
  1396. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1397. @table @asis
  1398. @item @emph{Description}:
  1399. Define the maximum number of buffers that tasks will be able to take
  1400. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1401. @end table
  1402. @node --enable-allocation-cache
  1403. @subsubsection @code{--enable-allocation-cache}
  1404. @table @asis
  1405. @item @emph{Description}:
  1406. Enable the use of a data allocation cache to avoid the cost of it with
  1407. CUDA. Still experimental.
  1408. @end table
  1409. @node --enable-opengl-render
  1410. @subsubsection @code{--enable-opengl-render}
  1411. @table @asis
  1412. @item @emph{Description}:
  1413. Enable the use of OpenGL for the rendering of some examples.
  1414. @c TODO: rather default to enabled when detected
  1415. @end table
  1416. @node --enable-blas-lib
  1417. @subsubsection @code{--enable-blas-lib=<name>}
  1418. @table @asis
  1419. @item @emph{Description}:
  1420. Specify the blas library to be used by some of the examples. The
  1421. library has to be 'atlas' or 'goto'.
  1422. @end table
  1423. @node --with-magma
  1424. @subsubsection @code{--with-magma=<path>}
  1425. @table @asis
  1426. @item @emph{Description}:
  1427. Specify where magma is installed. This directory should notably contain
  1428. @code{include/magmablas.h}.
  1429. @end table
  1430. @node --with-fxt
  1431. @subsubsection @code{--with-fxt=<path>}
  1432. @table @asis
  1433. @item @emph{Description}:
  1434. Specify the location of FxT (for generating traces and rendering them
  1435. using ViTE). This directory should notably contain
  1436. @code{include/fxt/fxt.h}.
  1437. @c TODO add ref to other section
  1438. @end table
  1439. @node --with-perf-model-dir
  1440. @subsubsection @code{--with-perf-model-dir=<dir>}
  1441. @table @asis
  1442. @item @emph{Description}:
  1443. Specify where performance models should be stored (instead of defaulting to the
  1444. current user's home).
  1445. @end table
  1446. @node --with-mpicc
  1447. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1448. @table @asis
  1449. @item @emph{Description}:
  1450. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1451. @end table
  1452. @node --with-goto-dir
  1453. @subsubsection @code{--with-goto-dir=<dir>}
  1454. @table @asis
  1455. @item @emph{Description}:
  1456. Specify the location of GotoBLAS.
  1457. @end table
  1458. @node --with-atlas-dir
  1459. @subsubsection @code{--with-atlas-dir=<dir>}
  1460. @table @asis
  1461. @item @emph{Description}:
  1462. Specify the location of ATLAS. This directory should notably contain
  1463. @code{include/cblas.h}.
  1464. @end table
  1465. @node --with-mkl-cflags
  1466. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1467. @table @asis
  1468. @item @emph{Description}:
  1469. Specify the compilation flags for the MKL Library.
  1470. @end table
  1471. @node --with-mkl-ldflags
  1472. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1473. @table @asis
  1474. @item @emph{Description}:
  1475. Specify the linking flags for the MKL Library. Note that the
  1476. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1477. website provides a script to determine the linking flags.
  1478. @end table
  1479. @c ---------------------------------------------------------------------
  1480. @c Environment variables
  1481. @c ---------------------------------------------------------------------
  1482. @node Execution configuration through environment variables
  1483. @section Execution configuration through environment variables
  1484. @menu
  1485. * Workers:: Configuring workers
  1486. * Scheduling:: Configuring the Scheduling engine
  1487. * Misc:: Miscellaneous and debug
  1488. @end menu
  1489. Note: the values given in @code{starpu_conf} structure passed when
  1490. calling @code{starpu_init} will override the values of the environment
  1491. variables.
  1492. @node Workers
  1493. @subsection Configuring workers
  1494. @menu
  1495. * STARPU_NCPUS:: Number of CPU workers
  1496. * STARPU_NCUDA:: Number of CUDA workers
  1497. * STARPU_NOPENCL:: Number of OpenCL workers
  1498. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1499. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1500. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1501. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1502. @end menu
  1503. @node STARPU_NCPUS
  1504. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1505. @table @asis
  1506. @item @emph{Description}:
  1507. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1508. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1509. the accelerators.
  1510. @end table
  1511. @node STARPU_NCUDA
  1512. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1513. @table @asis
  1514. @item @emph{Description}:
  1515. Specify the number of CUDA devices that StarPU can use. If
  1516. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1517. possible to select which CUDA devices should be used by the means of the
  1518. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1519. create as many CUDA workers as there are CUDA devices.
  1520. @end table
  1521. @node STARPU_NOPENCL
  1522. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1523. @table @asis
  1524. @item @emph{Description}:
  1525. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1526. @end table
  1527. @node STARPU_NGORDON
  1528. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1529. @table @asis
  1530. @item @emph{Description}:
  1531. Specify the number of SPUs that StarPU can use.
  1532. @end table
  1533. @node STARPU_WORKERS_CPUID
  1534. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1535. @table @asis
  1536. @item @emph{Description}:
  1537. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1538. specifies on which logical CPU the different workers should be
  1539. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1540. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1541. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1542. determined by the OS, or provided by the @code{hwloc} library in case it is
  1543. available.
  1544. Note that the first workers correspond to the CUDA workers, then come the
  1545. OpenCL and the SPU, and finally the CPU workers. For example if
  1546. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1547. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1548. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1549. the logical CPUs #1 and #3 will be used by the CPU workers.
  1550. If the number of workers is larger than the array given in
  1551. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1552. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1553. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1554. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1555. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1556. @end table
  1557. @node STARPU_WORKERS_CUDAID
  1558. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1559. @table @asis
  1560. @item @emph{Description}:
  1561. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1562. possible to select which CUDA devices should be used by StarPU. On a machine
  1563. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1564. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1565. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1566. the one reported by CUDA).
  1567. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1568. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1569. @end table
  1570. @node STARPU_WORKERS_OPENCLID
  1571. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1572. @table @asis
  1573. @item @emph{Description}:
  1574. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1575. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1576. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1577. @end table
  1578. @node Scheduling
  1579. @subsection Configuring the Scheduling engine
  1580. @menu
  1581. * STARPU_SCHED:: Scheduling policy
  1582. * STARPU_CALIBRATE:: Calibrate performance models
  1583. * STARPU_PREFETCH:: Use data prefetch
  1584. * STARPU_SCHED_ALPHA:: Computation factor
  1585. * STARPU_SCHED_BETA:: Communication factor
  1586. @end menu
  1587. @node STARPU_SCHED
  1588. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1589. @table @asis
  1590. @item @emph{Description}:
  1591. This chooses between the different scheduling policies proposed by StarPU: work
  1592. random, stealing, greedy, with performance models, etc.
  1593. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1594. @end table
  1595. @node STARPU_CALIBRATE
  1596. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1597. @table @asis
  1598. @item @emph{Description}:
  1599. If this variable is set to 1, the performance models are calibrated during
  1600. the execution. If it is set to 2, the previous values are dropped to restart
  1601. calibration from scratch. Setting this variable to 0 disable calibration, this
  1602. is the default behaviour.
  1603. Note: this currently only applies to dm and dmda scheduling policies.
  1604. @end table
  1605. @node STARPU_PREFETCH
  1606. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1607. @table @asis
  1608. @item @emph{Description}:
  1609. This variable indicates whether data prefetching should be enabled (0 means
  1610. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1611. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1612. advance, so that data is already present on the GPU when the task starts. As a
  1613. result, computation and data transfers are overlapped.
  1614. @end table
  1615. @node STARPU_SCHED_ALPHA
  1616. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1617. @table @asis
  1618. @item @emph{Description}:
  1619. To estimate the cost of a task StarPU takes into account the estimated
  1620. computation time (obtained thanks to performance models). The alpha factor is
  1621. the coefficient to be applied to it before adding it to the communication part.
  1622. @end table
  1623. @node STARPU_SCHED_BETA
  1624. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1625. @table @asis
  1626. @item @emph{Description}:
  1627. To estimate the cost of a task StarPU takes into account the estimated
  1628. data transfer time (obtained thanks to performance models). The beta factor is
  1629. the coefficient to be applied to it before adding it to the computation part.
  1630. @end table
  1631. @node Misc
  1632. @subsection Miscellaneous and debug
  1633. @menu
  1634. * STARPU_LOGFILENAME:: Select debug file name
  1635. * STARPU_FXT_PREFIX:: FxT trace location
  1636. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1637. @end menu
  1638. @node STARPU_LOGFILENAME
  1639. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1640. @table @asis
  1641. @item @emph{Description}:
  1642. This variable specifies in which file the debugging output should be saved to.
  1643. @end table
  1644. @node STARPU_FXT_PREFIX
  1645. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1646. @table @asis
  1647. @item @emph{Description}
  1648. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1649. @end table
  1650. @node STARPU_LIMIT_GPU_MEM
  1651. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1652. @table @asis
  1653. @item @emph{Description}
  1654. This variable specifies the maximum number of megabytes that should be
  1655. available to the application on each GPUs. In case this value is smaller than
  1656. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1657. on the device. This variable is intended to be used for experimental purposes
  1658. as it emulates devices that have a limited amount of memory.
  1659. @end table
  1660. @c ---------------------------------------------------------------------
  1661. @c StarPU API
  1662. @c ---------------------------------------------------------------------
  1663. @node StarPU API
  1664. @chapter StarPU API
  1665. @menu
  1666. * Initialization and Termination:: Initialization and Termination methods
  1667. * Workers' Properties:: Methods to enumerate workers' properties
  1668. * Data Library:: Methods to manipulate data
  1669. * Data Interfaces::
  1670. * Data Partition::
  1671. * Codelets and Tasks:: Methods to construct tasks
  1672. * Explicit Dependencies:: Explicit Dependencies
  1673. * Implicit Data Dependencies:: Implicit Data Dependencies
  1674. * Performance Model API::
  1675. * Profiling API:: Profiling API
  1676. * CUDA extensions:: CUDA extensions
  1677. * OpenCL extensions:: OpenCL extensions
  1678. * Cell extensions:: Cell extensions
  1679. * Miscellaneous helpers::
  1680. @end menu
  1681. @node Initialization and Termination
  1682. @section Initialization and Termination
  1683. @menu
  1684. * starpu_init:: Initialize StarPU
  1685. * struct starpu_conf:: StarPU runtime configuration
  1686. * starpu_conf_init:: Initialize starpu_conf structure
  1687. * starpu_shutdown:: Terminate StarPU
  1688. @end menu
  1689. @node starpu_init
  1690. @subsection @code{starpu_init} -- Initialize StarPU
  1691. @table @asis
  1692. @item @emph{Description}:
  1693. This is StarPU initialization method, which must be called prior to any other
  1694. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1695. policy, number of cores, ...) by passing a non-null argument. Default
  1696. configuration is used if the passed argument is @code{NULL}.
  1697. @item @emph{Return value}:
  1698. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1699. indicates that no worker was available (so that StarPU was not initialized).
  1700. @item @emph{Prototype}:
  1701. @code{int starpu_init(struct starpu_conf *conf);}
  1702. @end table
  1703. @node struct starpu_conf
  1704. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1705. @table @asis
  1706. @item @emph{Description}:
  1707. This structure is passed to the @code{starpu_init} function in order
  1708. to configure StarPU.
  1709. When the default value is used, StarPU automatically selects the number
  1710. of processing units and takes the default scheduling policy. This parameter
  1711. overwrites the equivalent environment variables.
  1712. @item @emph{Fields}:
  1713. @table @asis
  1714. @item @code{sched_policy_name} (default = NULL):
  1715. This is the name of the scheduling policy. This can also be specified with the
  1716. @code{STARPU_SCHED} environment variable.
  1717. @item @code{sched_policy} (default = NULL):
  1718. This is the definition of the scheduling policy. This field is ignored
  1719. if @code{sched_policy_name} is set.
  1720. @item @code{ncpus} (default = -1):
  1721. This is the number of CPU cores that StarPU can use. This can also be
  1722. specified with the @code{STARPU_NCPUS} environment variable.
  1723. @item @code{ncuda} (default = -1):
  1724. This is the number of CUDA devices that StarPU can use. This can also be
  1725. specified with the @code{STARPU_NCUDA} environment variable.
  1726. @item @code{nopencl} (default = -1):
  1727. This is the number of OpenCL devices that StarPU can use. This can also be
  1728. specified with the @code{STARPU_NOPENCL} environment variable.
  1729. @item @code{nspus} (default = -1):
  1730. This is the number of Cell SPUs that StarPU can use. This can also be
  1731. specified with the @code{STARPU_NGORDON} environment variable.
  1732. @item @code{use_explicit_workers_bindid} (default = 0)
  1733. If this flag is set, the @code{workers_bindid} array indicates where the
  1734. different workers are bound, otherwise StarPU automatically selects where to
  1735. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1736. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1737. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1738. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1739. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1740. where to bind the different workers. The i-th entry of the
  1741. @code{workers_bindid} indicates the logical identifier of the processor which
  1742. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1743. either determined by the OS, or provided by the @code{hwloc} library in case it
  1744. is available.
  1745. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1746. ignored.
  1747. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1748. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1749. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1750. CUDA devices in a round-robin fashion.
  1751. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1752. ignored.
  1753. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1754. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1755. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1756. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1757. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1758. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1759. OpenCL devices in a round-robin fashion.
  1760. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1761. @item @code{calibrate} (default = 0):
  1762. If this flag is set, StarPU will calibrate the performance models when
  1763. executing tasks. If this value is equal to -1, the default value is used. The
  1764. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1765. variable when it is set.
  1766. @end table
  1767. @end table
  1768. @node starpu_conf_init
  1769. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1770. @table @asis
  1771. This function initializes the @code{starpu_conf} structure passed as argument with the default values.
  1772. @item @emph{Return value}:
  1773. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1774. indicates that the argument was NULL.
  1775. @item @emph{Prototype}:
  1776. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1777. @end table
  1778. @node starpu_shutdown
  1779. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1780. @table @asis
  1781. @item @emph{Description}:
  1782. This is StarPU termination method. It must be called at the end of the
  1783. application: statistics and other post-mortem debugging information are not
  1784. guaranteed to be available until this method has been called.
  1785. @item @emph{Prototype}:
  1786. @code{void starpu_shutdown(void);}
  1787. @end table
  1788. @node Workers' Properties
  1789. @section Workers' Properties
  1790. @menu
  1791. * starpu_worker_get_count:: Get the number of processing units
  1792. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1793. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1794. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1795. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1796. * starpu_worker_get_id:: Get the identifier of the current worker
  1797. * starpu_worker_get_devid:: Get the device identifier of a worker
  1798. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1799. * starpu_worker_get_name:: Get the name of a worker
  1800. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1801. @end menu
  1802. @node starpu_worker_get_count
  1803. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1804. @table @asis
  1805. @item @emph{Description}:
  1806. This function returns the number of workers (i.e. processing units executing
  1807. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1808. @item @emph{Prototype}:
  1809. @code{unsigned starpu_worker_get_count(void);}
  1810. @end table
  1811. @node starpu_cpu_worker_get_count
  1812. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1813. @table @asis
  1814. @item @emph{Description}:
  1815. This function returns the number of CPUs controlled by StarPU. The returned
  1816. value should be at most @code{STARPU_NMAXCPUS}.
  1817. @item @emph{Prototype}:
  1818. @code{unsigned starpu_cpu_worker_get_count(void);}
  1819. @end table
  1820. @node starpu_cuda_worker_get_count
  1821. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1822. @table @asis
  1823. @item @emph{Description}:
  1824. This function returns the number of CUDA devices controlled by StarPU. The returned
  1825. value should be at most @code{STARPU_MAXCUDADEVS}.
  1826. @item @emph{Prototype}:
  1827. @code{unsigned starpu_cuda_worker_get_count(void);}
  1828. @end table
  1829. @node starpu_opencl_worker_get_count
  1830. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1831. @table @asis
  1832. @item @emph{Description}:
  1833. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1834. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1835. @item @emph{Prototype}:
  1836. @code{unsigned starpu_opencl_worker_get_count(void);}
  1837. @end table
  1838. @node starpu_spu_worker_get_count
  1839. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1840. @table @asis
  1841. @item @emph{Description}:
  1842. This function returns the number of Cell SPUs controlled by StarPU.
  1843. @item @emph{Prototype}:
  1844. @code{unsigned starpu_opencl_worker_get_count(void);}
  1845. @end table
  1846. @node starpu_worker_get_id
  1847. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1848. @table @asis
  1849. @item @emph{Description}:
  1850. This function returns the identifier of the worker associated to the calling
  1851. thread. The returned value is either -1 if the current context is not a StarPU
  1852. worker (i.e. when called from the application outside a task or a callback), or
  1853. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1854. @item @emph{Prototype}:
  1855. @code{int starpu_worker_get_id(void);}
  1856. @end table
  1857. @node starpu_worker_get_devid
  1858. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1859. @table @asis
  1860. @item @emph{Description}:
  1861. This functions returns the device id of the worker associated to an identifier
  1862. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1863. CUDA worker, this device identifier is the logical device identifier exposed by
  1864. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1865. identifier of a CPU worker is the logical identifier of the core on which the
  1866. worker was bound; this identifier is either provided by the OS or by the
  1867. @code{hwloc} library in case it is available.
  1868. @item @emph{Prototype}:
  1869. @code{int starpu_worker_get_devid(int id);}
  1870. @end table
  1871. @node starpu_worker_get_type
  1872. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1873. @table @asis
  1874. @item @emph{Description}:
  1875. This function returns the type of worker associated to an identifier (as
  1876. returned by the @code{starpu_worker_get_id} function). The returned value
  1877. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1878. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1879. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1880. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1881. identifier is unspecified.
  1882. @item @emph{Prototype}:
  1883. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1884. @end table
  1885. @node starpu_worker_get_name
  1886. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1887. @table @asis
  1888. @item @emph{Description}:
  1889. StarPU associates a unique human readable string to each processing unit. This
  1890. function copies at most the @code{maxlen} first bytes of the unique string
  1891. associated to a worker identified by its identifier @code{id} into the
  1892. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1893. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1894. function on an invalid identifier results in an unspecified behaviour.
  1895. @item @emph{Prototype}:
  1896. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1897. @end table
  1898. @node starpu_worker_get_memory_node
  1899. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1900. @table @asis
  1901. @item @emph{Description}:
  1902. This function returns the identifier of the memory node associated to the
  1903. worker identified by @code{workerid}.
  1904. @item @emph{Prototype}:
  1905. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1906. @end table
  1907. @node Data Library
  1908. @section Data Library
  1909. This section describes the data management facilities provided by StarPU.
  1910. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1911. design their own data interfaces if required.
  1912. @menu
  1913. * starpu_access_mode:: starpu_access_mode
  1914. * unsigned memory_node:: Memory node
  1915. * starpu_data_handle:: StarPU opaque data handle
  1916. * void *interface:: StarPU data interface
  1917. * starpu_data_register:: Register a piece of data to StarPU
  1918. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1919. * starpu_data_invalidate:: Invalidate all data replicates
  1920. * starpu_data_acquire:: Access registered data from the application
  1921. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1922. * starpu_data_release:: Release registered data from the application
  1923. @end menu
  1924. @node starpu_access_mode
  1925. @subsection @code{starpu_access_mode} -- Data access mode
  1926. This datatype describes a data access mode. The different available modes are:
  1927. @table @asis
  1928. @table @asis
  1929. @item @code{STARPU_R} read-only mode.
  1930. @item @code{STARPU_W} write-only mode.
  1931. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1932. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  1933. @end table
  1934. @end table
  1935. @node unsigned memory_node
  1936. @subsection @code{unsigned memory_node} -- Memory node
  1937. @table @asis
  1938. @item @emph{Description}:
  1939. Every worker is associated to a memory node which is a logical abstraction of
  1940. the address space from which the processing unit gets its data. For instance,
  1941. the memory node associated to the different CPU workers represents main memory
  1942. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1943. Every memory node is identified by a logical index which is accessible from the
  1944. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1945. to StarPU, the specified memory node indicates where the piece of data
  1946. initially resides (we also call this memory node the home node of a piece of
  1947. data).
  1948. @end table
  1949. @node starpu_data_handle
  1950. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1951. @table @asis
  1952. @item @emph{Description}:
  1953. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1954. data. Once a piece of data has been registered to StarPU, it is associated to a
  1955. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1956. over the entire machine, so that we can maintain data consistency and locate
  1957. data replicates for instance.
  1958. @end table
  1959. @node void *interface
  1960. @subsection @code{void *interface} -- StarPU data interface
  1961. @table @asis
  1962. @item @emph{Description}:
  1963. Data management is done at a high-level in StarPU: rather than accessing a mere
  1964. list of contiguous buffers, the tasks may manipulate data that are described by
  1965. a high-level construct which we call data interface.
  1966. An example of data interface is the "vector" interface which describes a
  1967. contiguous data array on a spefic memory node. This interface is a simple
  1968. structure containing the number of elements in the array, the size of the
  1969. elements, and the address of the array in the appropriate address space (this
  1970. address may be invalid if there is no valid copy of the array in the memory
  1971. node). More informations on the data interfaces provided by StarPU are
  1972. given in @ref{Data Interfaces}.
  1973. When a piece of data managed by StarPU is used by a task, the task
  1974. implementation is given a pointer to an interface describing a valid copy of
  1975. the data that is accessible from the current processing unit.
  1976. @end table
  1977. @node starpu_data_register
  1978. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1979. @table @asis
  1980. @item @emph{Description}:
  1981. Register a piece of data into the handle located at the @code{handleptr}
  1982. address. The @code{interface} buffer contains the initial description of the
  1983. data in the home node. The @code{ops} argument is a pointer to a structure
  1984. describing the different methods used to manipulate this type of interface. See
  1985. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1986. If @code{home_node} is -1, StarPU will automatically
  1987. allocate the memory when it is used for the
  1988. first time in write-only mode. Once such data handle has been automatically
  1989. allocated, it is possible to access it using any access mode.
  1990. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1991. matrix) which can be registered by the means of helper functions (e.g.
  1992. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1993. @item @emph{Prototype}:
  1994. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1995. uint32_t home_node,
  1996. void *interface,
  1997. struct starpu_data_interface_ops_t *ops);}
  1998. @end table
  1999. @node starpu_data_unregister
  2000. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2001. @table @asis
  2002. @item @emph{Description}:
  2003. This function unregisters a data handle from StarPU. If the data was
  2004. automatically allocated by StarPU because the home node was -1, all
  2005. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2006. is put back into the home node in the buffer that was initially registered.
  2007. Using a data handle that has been unregistered from StarPU results in an
  2008. undefined behaviour.
  2009. @item @emph{Prototype}:
  2010. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2011. @end table
  2012. @node starpu_data_invalidate
  2013. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2014. @table @asis
  2015. @item @emph{Description}:
  2016. Destroy all replicates of the data handle. After data invalidation, the first
  2017. access to the handle must be performed in write-only mode. Accessing an
  2018. invalidated data in read-mode results in undefined behaviour.
  2019. @item @emph{Prototype}:
  2020. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2021. @end table
  2022. @c TODO create a specific sections about user interaction with the DSM ?
  2023. @node starpu_data_acquire
  2024. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2025. @table @asis
  2026. @item @emph{Description}:
  2027. The application must call this function prior to accessing registered data from
  2028. main memory outside tasks. StarPU ensures that the application will get an
  2029. up-to-date copy of the data in main memory located where the data was
  2030. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2031. be consistent with the access mode specified in the @code{mode} argument.
  2032. @code{starpu_data_release} must be called once the application does not need to
  2033. access the piece of data anymore.
  2034. Note that implicit data dependencies are also enforced by
  2035. @code{starpu_data_acquire} in case they are enabled.
  2036. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2037. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2038. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2039. @item @emph{Prototype}:
  2040. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2041. @end table
  2042. @node starpu_data_acquire_cb
  2043. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2044. @table @asis
  2045. @item @emph{Description}:
  2046. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2047. @code{starpu_data_release}. When the data specified in the first argument is
  2048. available in the appropriate access mode, the callback function is executed.
  2049. The application may access the requested data during the execution of this
  2050. callback. The callback function must call @code{starpu_data_release} once the
  2051. application does not need to access the piece of data anymore.
  2052. Note that implicit data dependencies are also enforced by
  2053. @code{starpu_data_acquire_cb} in case they are enabled.
  2054. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2055. be called from task callbacks. Upon successful completion, this function
  2056. returns 0.
  2057. @item @emph{Prototype}:
  2058. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2059. @end table
  2060. @node starpu_data_release
  2061. @subsection @code{starpu_data_release} -- Release registered data from the application
  2062. @table @asis
  2063. @item @emph{Description}:
  2064. This function releases the piece of data acquired by the application either by
  2065. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2066. @item @emph{Prototype}:
  2067. @code{void starpu_data_release(starpu_data_handle handle);}
  2068. @end table
  2069. @node Data Interfaces
  2070. @section Data Interfaces
  2071. @menu
  2072. * Variable Interface::
  2073. * Vector Interface::
  2074. * Matrix Interface::
  2075. * 3D Matrix Interface::
  2076. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2077. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2078. @end menu
  2079. @node Variable Interface
  2080. @subsection Variable Interface
  2081. @table @asis
  2082. @item @emph{Description}:
  2083. This variant of @code{starpu_data_register} uses the variable interface,
  2084. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2085. and @code{elemsize} is the size of the variable.
  2086. @item @emph{Prototype}:
  2087. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2088. uint32_t home_node,
  2089. uintptr_t ptr, size_t elemsize);}
  2090. @item @emph{Example}:
  2091. @cartouche
  2092. @smallexample
  2093. float var;
  2094. starpu_data_handle var_handle;
  2095. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2096. @end smallexample
  2097. @end cartouche
  2098. @end table
  2099. @node Vector Interface
  2100. @subsection Vector Interface
  2101. @table @asis
  2102. @item @emph{Description}:
  2103. This variant of @code{starpu_data_register} uses the vector interface,
  2104. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2105. element in the home node. @code{nx} is the number of elements in the vector.
  2106. @code{elemsize} is the size of each element.
  2107. @item @emph{Prototype}:
  2108. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2109. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2110. @item @emph{Example}:
  2111. @cartouche
  2112. @smallexample
  2113. float vector[NX];
  2114. starpu_data_handle vector_handle;
  2115. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2116. sizeof(vector[0]));
  2117. @end smallexample
  2118. @end cartouche
  2119. @end table
  2120. @node Matrix Interface
  2121. @subsection Matrix Interface
  2122. @table @asis
  2123. @item @emph{Description}:
  2124. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2125. matrices of elements. @code{ptr} is the address of the first element in the home
  2126. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2127. of elements in a row (this can be different from @code{ld} if there are extra
  2128. elements for alignment for instance). @code{ny} is the number of rows.
  2129. @code{elemsize} is the size of each element.
  2130. @item @emph{Prototype}:
  2131. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2132. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2133. uint32_t ny, size_t elemsize);}
  2134. @item @emph{Example}:
  2135. @cartouche
  2136. @smallexample
  2137. float *matrix;
  2138. starpu_data_handle matrix_handle;
  2139. matrix = (float*)malloc(width * height * sizeof(float));
  2140. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2141. width, width, height, sizeof(float));
  2142. @end smallexample
  2143. @end cartouche
  2144. @end table
  2145. @node 3D Matrix Interface
  2146. @subsection 3D Matrix Interface
  2147. @table @asis
  2148. @item @emph{Description}:
  2149. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2150. @code{ptr} is the address of the array of first element in the home node.
  2151. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2152. of rows between z planes. @code{nx} is the number of elements in a row (this
  2153. can be different from @code{ldy} if there are extra elements for alignment
  2154. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2155. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2156. each element.
  2157. @item @emph{Prototype}:
  2158. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2159. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2160. uint32_t ny, uint32_t nz, size_t elemsize);}
  2161. @item @emph{Example}:
  2162. @cartouche
  2163. @smallexample
  2164. float *block;
  2165. starpu_data_handle block_handle;
  2166. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2167. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2168. nx, nx*ny, nx, ny, nz, sizeof(float));
  2169. @end smallexample
  2170. @end cartouche
  2171. @end table
  2172. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2173. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2174. @table @asis
  2175. @item @emph{Description}:
  2176. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2177. TODO
  2178. @item @emph{Prototype}:
  2179. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2180. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2181. @item @emph{Example}:
  2182. @cartouche
  2183. @smallexample
  2184. @end smallexample
  2185. @end cartouche
  2186. @end table
  2187. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2188. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2189. @table @asis
  2190. @item @emph{Description}:
  2191. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2192. TODO
  2193. @item @emph{Prototype}:
  2194. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2195. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2196. @item @emph{Example}:
  2197. @cartouche
  2198. @smallexample
  2199. @end smallexample
  2200. @end cartouche
  2201. @end table
  2202. @node Data Partition
  2203. @section Data Partition
  2204. @menu
  2205. * struct starpu_data_filter:: StarPU filter structure
  2206. * starpu_data_partition:: Partition Data
  2207. * starpu_data_unpartition:: Unpartition Data
  2208. * starpu_data_get_nb_children::
  2209. * starpu_data_get_sub_data::
  2210. * Predefined filter functions::
  2211. @end menu
  2212. @node struct starpu_data_filter
  2213. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2214. @table @asis
  2215. @item @emph{Description}:
  2216. The filter structure describes a data partitioning operation, to be given to the
  2217. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2218. @item @emph{Fields}:
  2219. @table @asis
  2220. @item @code{filter_func}:
  2221. This function fills the @code{child_interface} structure with interface
  2222. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2223. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2224. @item @code{nchildren}:
  2225. This is the number of parts to partition the data into.
  2226. @item @code{get_nchildren}:
  2227. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2228. children depends on the actual data (e.g. the number of blocks in a sparse
  2229. matrix).
  2230. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2231. @item @code{get_child_ops}:
  2232. In case the resulting children use a different data interface, this function
  2233. returns which interface is used by child number @code{id}.
  2234. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2235. @item @code{filter_arg}:
  2236. Some filters take an addition parameter, but this is usually unused.
  2237. @item @code{filter_arg_ptr}:
  2238. Some filters take an additional array parameter like the sizes of the parts, but
  2239. this is usually unused.
  2240. @end table
  2241. @end table
  2242. @node starpu_data_partition
  2243. @subsection starpu_data_partition -- Partition Data
  2244. @table @asis
  2245. @item @emph{Description}:
  2246. This requests partitioning one StarPU data @code{initial_handle} into several
  2247. subdata according to the filter @code{f}
  2248. @item @emph{Prototype}:
  2249. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2250. @item @emph{Example}:
  2251. @cartouche
  2252. @smallexample
  2253. struct starpu_data_filter f = @{
  2254. .filter_func = starpu_vertical_block_filter_func,
  2255. .nchildren = nslicesx,
  2256. .get_nchildren = NULL,
  2257. .get_child_ops = NULL
  2258. @};
  2259. starpu_data_partition(A_handle, &f);
  2260. @end smallexample
  2261. @end cartouche
  2262. @end table
  2263. @node starpu_data_unpartition
  2264. @subsection starpu_data_unpartition -- Unpartition data
  2265. @table @asis
  2266. @item @emph{Description}:
  2267. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2268. collected back into one big piece in the @code{gathering_node} (usually 0).
  2269. @item @emph{Prototype}:
  2270. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2271. @item @emph{Example}:
  2272. @cartouche
  2273. @smallexample
  2274. starpu_data_unpartition(A_handle, 0);
  2275. @end smallexample
  2276. @end cartouche
  2277. @end table
  2278. @node starpu_data_get_nb_children
  2279. @subsection starpu_data_get_nb_children
  2280. @table @asis
  2281. @item @emph{Description}:
  2282. This function returns the number of children.
  2283. @item @emph{Return value}:
  2284. The number of children.
  2285. @item @emph{Prototype}:
  2286. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2287. @end table
  2288. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2289. @node starpu_data_get_sub_data
  2290. @subsection starpu_data_get_sub_data
  2291. @table @asis
  2292. @item @emph{Description}:
  2293. After partitioning a StarPU data by applying a filter,
  2294. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2295. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2296. is the number of filters to traverse (in case several filters have been applied,
  2297. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2298. parameters are the indexes.
  2299. @item @emph{Return value}:
  2300. A handle to the subdata.
  2301. @item @emph{Prototype}:
  2302. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2303. @item @emph{Example}:
  2304. @cartouche
  2305. @smallexample
  2306. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2307. @end smallexample
  2308. @end cartouche
  2309. @end table
  2310. @node Predefined filter functions
  2311. @subsection Predefined filter functions
  2312. @menu
  2313. * Partitioning BCSR Data::
  2314. * Partitioning BLAS interface::
  2315. * Partitioning Vector Data::
  2316. * Partitioning Block Data::
  2317. @end menu
  2318. This section gives a partial list of the predefined partitioning functions.
  2319. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2320. list can be found in @code{starpu_data_filters.h} .
  2321. @node Partitioning BCSR Data
  2322. @subsubsection Partitioning BCSR Data
  2323. @table @asis
  2324. @item @emph{Description}:
  2325. TODO
  2326. @item @emph{Prototype}:
  2327. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2328. @end table
  2329. @table @asis
  2330. @item @emph{Description}:
  2331. TODO
  2332. @item @emph{Prototype}:
  2333. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2334. @end table
  2335. @node Partitioning BLAS interface
  2336. @subsubsection Partitioning BLAS interface
  2337. @table @asis
  2338. @item @emph{Description}:
  2339. This partitions a dense Matrix into horizontal blocks.
  2340. @item @emph{Prototype}:
  2341. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2342. @end table
  2343. @table @asis
  2344. @item @emph{Description}:
  2345. This partitions a dense Matrix into vertical blocks.
  2346. @item @emph{Prototype}:
  2347. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2348. @end table
  2349. @node Partitioning Vector Data
  2350. @subsubsection Partitioning Vector Data
  2351. @table @asis
  2352. @item @emph{Description}:
  2353. This partitions a vector into blocks of the same size.
  2354. @item @emph{Prototype}:
  2355. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2356. @end table
  2357. @table @asis
  2358. @item @emph{Description}:
  2359. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2360. @item @emph{Prototype}:
  2361. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2362. @end table
  2363. @table @asis
  2364. @item @emph{Description}:
  2365. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2366. @item @emph{Prototype}:
  2367. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2368. @end table
  2369. @node Partitioning Block Data
  2370. @subsubsection Partitioning Block Data
  2371. @table @asis
  2372. @item @emph{Description}:
  2373. This partitions a 3D matrix along the X axis.
  2374. @item @emph{Prototype}:
  2375. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2376. @end table
  2377. @node Codelets and Tasks
  2378. @section Codelets and Tasks
  2379. @menu
  2380. * struct starpu_codelet:: StarPU codelet structure
  2381. * struct starpu_task:: StarPU task structure
  2382. * starpu_task_init:: Initialize a Task
  2383. * starpu_task_create:: Allocate and Initialize a Task
  2384. * starpu_task_deinit:: Release all the resources used by a Task
  2385. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2386. * starpu_task_wait:: Wait for the termination of a Task
  2387. * starpu_task_submit:: Submit a Task
  2388. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2389. * starpu_get_current_task:: Return the task currently executed by the worker
  2390. * starpu_display_codelet_stats:: Display statistics
  2391. @end menu
  2392. @node struct starpu_codelet
  2393. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2394. @table @asis
  2395. @item @emph{Description}:
  2396. The codelet structure describes a kernel that is possibly implemented on
  2397. various targets.
  2398. @item @emph{Fields}:
  2399. @table @asis
  2400. @item @code{where}:
  2401. Indicates which types of processing units are able to execute the codelet.
  2402. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2403. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2404. indicates that it is only available on Cell SPUs.
  2405. @item @code{cpu_func} (optional):
  2406. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2407. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2408. argument being the array of data managed by the data management library, and
  2409. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2410. field of the @code{starpu_task} structure.
  2411. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2412. the @code{where} field, it must be non-null otherwise.
  2413. @item @code{cuda_func} (optional):
  2414. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2415. must be a host-function written in the CUDA runtime API}. Its prototype must
  2416. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2417. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2418. field, it must be non-null otherwise.
  2419. @item @code{opencl_func} (optional):
  2420. Is a function pointer to the OpenCL implementation of the codelet. Its
  2421. prototype must be:
  2422. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2423. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2424. @code{where} field, it must be non-null otherwise.
  2425. @item @code{gordon_func} (optional):
  2426. This is the index of the Cell SPU implementation within the Gordon library.
  2427. See Gordon documentation for more details on how to register a kernel and
  2428. retrieve its index.
  2429. @item @code{nbuffers}:
  2430. Specifies the number of arguments taken by the codelet. These arguments are
  2431. managed by the DSM and are accessed from the @code{void *buffers[]}
  2432. array. The constant argument passed with the @code{cl_arg} field of the
  2433. @code{starpu_task} structure is not counted in this number. This value should
  2434. not be above @code{STARPU_NMAXBUFS}.
  2435. @item @code{model} (optional):
  2436. This is a pointer to the performance model associated to this codelet. This
  2437. optional field is ignored when set to @code{NULL}. TODO
  2438. @end table
  2439. @end table
  2440. @node struct starpu_task
  2441. @subsection @code{struct starpu_task} -- StarPU task structure
  2442. @table @asis
  2443. @item @emph{Description}:
  2444. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2445. processing units managed by StarPU. It instantiates a codelet. It can either be
  2446. allocated dynamically with the @code{starpu_task_create} method, or declared
  2447. statically. In the latter case, the programmer has to zero the
  2448. @code{starpu_task} structure and to fill the different fields properly. The
  2449. indicated default values correspond to the configuration of a task allocated
  2450. with @code{starpu_task_create}.
  2451. @item @emph{Fields}:
  2452. @table @asis
  2453. @item @code{cl}:
  2454. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2455. describes where the kernel should be executed, and supplies the appropriate
  2456. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2457. such empty tasks can be useful for synchronization purposes.
  2458. @item @code{buffers}:
  2459. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2460. different pieces of data accessed by the task, and how they should be accessed.
  2461. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2462. @code{handle} field specifies the handle of the piece of data, and the
  2463. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2464. of entries in this array must be specified in the @code{nbuffers} field of the
  2465. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2466. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2467. option when configuring StarPU.
  2468. @item @code{cl_arg} (optional) (default = NULL):
  2469. This pointer is passed to the codelet through the second argument
  2470. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2471. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2472. argument.
  2473. @item @code{cl_arg_size} (optional, Cell specific):
  2474. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2475. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2476. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2477. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2478. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2479. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2480. codelets.
  2481. @item @code{callback_func} (optional) (default = @code{NULL}):
  2482. This is a function pointer of prototype @code{void (*f)(void *)} which
  2483. specifies a possible callback. If this pointer is non-null, the callback
  2484. function is executed @emph{on the host} after the execution of the task. The
  2485. callback is passed the value contained in the @code{callback_arg} field. No
  2486. callback is executed if the field is set to @code{NULL}.
  2487. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2488. This is the pointer passed to the callback function. This field is ignored if
  2489. the @code{callback_func} is set to @code{NULL}.
  2490. @item @code{use_tag} (optional) (default = 0):
  2491. If set, this flag indicates that the task should be associated with the tag
  2492. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2493. with the task and to express task dependencies easily.
  2494. @item @code{tag_id}:
  2495. This fields contains the tag associated to the task if the @code{use_tag} field
  2496. was set, it is ignored otherwise.
  2497. @item @code{synchronous}:
  2498. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2499. returns only when the task has been executed (or if no worker is able to
  2500. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2501. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2502. This field indicates a level of priority for the task. This is an integer value
  2503. that must be set between the return values of the
  2504. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2505. and that of the @code{starpu_sched_get_max_priority} for the most important
  2506. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2507. are provided for convenience and respectively returns value of
  2508. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2509. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2510. order to allow static task initialization. Scheduling strategies that take
  2511. priorities into account can use this parameter to take better scheduling
  2512. decisions, but the scheduling policy may also ignore it.
  2513. @item @code{execute_on_a_specific_worker} (default = 0):
  2514. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2515. task to the worker specified by the @code{workerid} field.
  2516. @item @code{workerid} (optional):
  2517. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2518. which is the identifier of the worker that should process this task (as
  2519. returned by @code{starpu_worker_get_id}). This field is ignored if
  2520. @code{execute_on_a_specific_worker} field is set to 0.
  2521. @item @code{detach} (optional) (default = 1):
  2522. If this flag is set, it is not possible to synchronize with the task
  2523. by the means of @code{starpu_task_wait} later on. Internal data structures
  2524. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2525. flag is not set.
  2526. @item @code{destroy} (optional) (default = 1):
  2527. If this flag is set, the task structure will automatically be freed, either
  2528. after the execution of the callback if the task is detached, or during
  2529. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2530. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2531. called explicitly. Setting this flag for a statically allocated task structure
  2532. will result in undefined behaviour.
  2533. @item @code{predicted} (output field):
  2534. Predicted duration of the task. This field is only set if the scheduling
  2535. strategy used performance models.
  2536. @end table
  2537. @end table
  2538. @node starpu_task_init
  2539. @subsection @code{starpu_task_init} -- Initialize a Task
  2540. @table @asis
  2541. @item @emph{Description}:
  2542. Initialize a task structure with default values. This function is implicitly
  2543. called by @code{starpu_task_create}. By default, tasks initialized with
  2544. @code{starpu_task_init} must be deinitialized explicitly with
  2545. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2546. constant @code{STARPU_TASK_INITIALIZER}.
  2547. @item @emph{Prototype}:
  2548. @code{void starpu_task_init(struct starpu_task *task);}
  2549. @end table
  2550. @node starpu_task_create
  2551. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2552. @table @asis
  2553. @item @emph{Description}:
  2554. Allocate a task structure and initialize it with default values. Tasks
  2555. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2556. task is terminated. If the destroy flag is explicitly unset, the resources used
  2557. by the task are freed by calling
  2558. @code{starpu_task_destroy}.
  2559. @item @emph{Prototype}:
  2560. @code{struct starpu_task *starpu_task_create(void);}
  2561. @end table
  2562. @node starpu_task_deinit
  2563. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2564. @table @asis
  2565. @item @emph{Description}:
  2566. Release all the structures automatically allocated to execute the task. This is
  2567. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2568. freed. This should be used for statically allocated tasks for instance.
  2569. @item @emph{Prototype}:
  2570. @code{void starpu_task_deinit(struct starpu_task *task);}
  2571. @end table
  2572. @node starpu_task_destroy
  2573. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2574. @table @asis
  2575. @item @emph{Description}:
  2576. Free the resource allocated during @code{starpu_task_create}. This function can be
  2577. called automatically after the execution of a task by setting the
  2578. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2579. Calling this function on a statically allocated task results in an undefined
  2580. behaviour.
  2581. @item @emph{Prototype}:
  2582. @code{void starpu_task_destroy(struct starpu_task *task);}
  2583. @end table
  2584. @node starpu_task_wait
  2585. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2586. @table @asis
  2587. @item @emph{Description}:
  2588. This function blocks until the task has been executed. It is not possible to
  2589. synchronize with a task more than once. It is not possible to wait for
  2590. synchronous or detached tasks.
  2591. @item @emph{Return value}:
  2592. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2593. indicates that the specified task was either synchronous or detached.
  2594. @item @emph{Prototype}:
  2595. @code{int starpu_task_wait(struct starpu_task *task);}
  2596. @end table
  2597. @node starpu_task_submit
  2598. @subsection @code{starpu_task_submit} -- Submit a Task
  2599. @table @asis
  2600. @item @emph{Description}:
  2601. This function submits a task to StarPU. Calling this function does
  2602. not mean that the task will be executed immediately as there can be data or task
  2603. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2604. scheduling this task with respect to such dependencies.
  2605. This function returns immediately if the @code{synchronous} field of the
  2606. @code{starpu_task} structure was set to 0, and block until the termination of
  2607. the task otherwise. It is also possible to synchronize the application with
  2608. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2609. function for instance.
  2610. @item @emph{Return value}:
  2611. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2612. means that there is no worker able to process this task (e.g. there is no GPU
  2613. available and this task is only implemented for CUDA devices).
  2614. @item @emph{Prototype}:
  2615. @code{int starpu_task_submit(struct starpu_task *task);}
  2616. @end table
  2617. @node starpu_task_wait_for_all
  2618. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2619. @table @asis
  2620. @item @emph{Description}:
  2621. This function blocks until all the tasks that were submitted are terminated.
  2622. @item @emph{Prototype}:
  2623. @code{void starpu_task_wait_for_all(void);}
  2624. @end table
  2625. @node starpu_get_current_task
  2626. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2627. @table @asis
  2628. @item @emph{Description}:
  2629. This function returns the task currently executed by the worker, or
  2630. NULL if it is called either from a thread that is not a task or simply
  2631. because there is no task being executed at the moment.
  2632. @item @emph{Prototype}:
  2633. @code{struct starpu_task *starpu_get_current_task(void);}
  2634. @end table
  2635. @node starpu_display_codelet_stats
  2636. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2637. @table @asis
  2638. @item @emph{Description}:
  2639. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2640. @item @emph{Prototype}:
  2641. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2642. @end table
  2643. @c Callbacks : what can we put in callbacks ?
  2644. @node Explicit Dependencies
  2645. @section Explicit Dependencies
  2646. @menu
  2647. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2648. * starpu_tag_t:: Task logical identifier
  2649. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2650. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2651. * starpu_tag_wait:: Block until a Tag is terminated
  2652. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2653. * starpu_tag_remove:: Destroy a Tag
  2654. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2655. @end menu
  2656. @node starpu_task_declare_deps_array
  2657. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2658. @table @asis
  2659. @item @emph{Description}:
  2660. Declare task dependencies between a @code{task} and an array of tasks of length
  2661. @code{ndeps}. This function must be called prior to the submission of the task,
  2662. but it may called after the submission or the execution of the tasks in the
  2663. array provided the tasks are still valid (ie. they were not automatically
  2664. destroyed). Calling this function on a task that was already submitted or with
  2665. an entry of @code{task_array} that is not a valid task anymore results in an
  2666. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2667. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2668. same task, in this case, the dependencies are added. It is possible to have
  2669. redundancy in the task dependencies.
  2670. @item @emph{Prototype}:
  2671. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2672. @end table
  2673. @node starpu_tag_t
  2674. @subsection @code{starpu_tag_t} -- Task logical identifier
  2675. @table @asis
  2676. @item @emph{Description}:
  2677. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2678. dependencies between tasks by the means of those tags. To do so, fill the
  2679. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2680. be arbitrary) and set the @code{use_tag} field to 1.
  2681. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2682. not be started until the tasks which holds the declared dependency tags are
  2683. completed.
  2684. @end table
  2685. @node starpu_tag_declare_deps
  2686. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2687. @table @asis
  2688. @item @emph{Description}:
  2689. Specify the dependencies of the task identified by tag @code{id}. The first
  2690. argument specifies the tag which is configured, the second argument gives the
  2691. number of tag(s) on which @code{id} depends. The following arguments are the
  2692. tags which have to be terminated to unlock the task.
  2693. This function must be called before the associated task is submitted to StarPU
  2694. with @code{starpu_task_submit}.
  2695. @item @emph{Remark}
  2696. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2697. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2698. typically need to be explicitly casted. Using the
  2699. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2700. @item @emph{Prototype}:
  2701. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2702. @item @emph{Example}:
  2703. @cartouche
  2704. @example
  2705. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2706. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2707. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2708. @end example
  2709. @end cartouche
  2710. @end table
  2711. @node starpu_tag_declare_deps_array
  2712. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2713. @table @asis
  2714. @item @emph{Description}:
  2715. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2716. does not take a variable number of arguments but an array of tags of size
  2717. @code{ndeps}.
  2718. @item @emph{Prototype}:
  2719. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2720. @item @emph{Example}:
  2721. @cartouche
  2722. @example
  2723. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2724. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2725. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2726. @end example
  2727. @end cartouche
  2728. @end table
  2729. @node starpu_tag_wait
  2730. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2731. @table @asis
  2732. @item @emph{Description}:
  2733. This function blocks until the task associated to tag @code{id} has been
  2734. executed. This is a blocking call which must therefore not be called within
  2735. tasks or callbacks, but only from the application directly. It is possible to
  2736. synchronize with the same tag multiple times, as long as the
  2737. @code{starpu_tag_remove} function is not called. Note that it is still
  2738. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2739. data structure was freed (e.g. if the @code{destroy} flag of the
  2740. @code{starpu_task} was enabled).
  2741. @item @emph{Prototype}:
  2742. @code{void starpu_tag_wait(starpu_tag_t id);}
  2743. @end table
  2744. @node starpu_tag_wait_array
  2745. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2746. @table @asis
  2747. @item @emph{Description}:
  2748. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2749. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2750. terminated.
  2751. @item @emph{Prototype}:
  2752. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2753. @end table
  2754. @node starpu_tag_remove
  2755. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2756. @table @asis
  2757. @item @emph{Description}:
  2758. This function releases the resources associated to tag @code{id}. It can be
  2759. called once the corresponding task has been executed and when there is
  2760. no other tag that depend on this tag anymore.
  2761. @item @emph{Prototype}:
  2762. @code{void starpu_tag_remove(starpu_tag_t id);}
  2763. @end table
  2764. @node starpu_tag_notify_from_apps
  2765. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2766. @table @asis
  2767. @item @emph{Description}:
  2768. This function explicitly unlocks tag @code{id}. It may be useful in the
  2769. case of applications which execute part of their computation outside StarPU
  2770. tasks (e.g. third-party libraries). It is also provided as a
  2771. convenient tool for the programmer, for instance to entirely construct the task
  2772. DAG before actually giving StarPU the opportunity to execute the tasks.
  2773. @item @emph{Prototype}:
  2774. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2775. @end table
  2776. @node Implicit Data Dependencies
  2777. @section Implicit Data Dependencies
  2778. @menu
  2779. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2780. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2781. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2782. @end menu
  2783. In this section, we describe how StarPU makes it possible to insert implicit
  2784. task dependencies in order to enforce sequential data consistency. When this
  2785. data consistency is enabled on a specific data handle, any data access will
  2786. appear as sequentially consistent from the application. For instance, if the
  2787. application submits two tasks that access the same piece of data in read-only
  2788. mode, and then a third task that access it in write mode, dependencies will be
  2789. added between the two first tasks and the third one. Implicit data dependencies
  2790. are also inserted in the case of data accesses from the application.
  2791. @node starpu_data_set_default_sequential_consistency_flag
  2792. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2793. @table @asis
  2794. @item @emph{Description}:
  2795. Set the default sequential consistency flag. If a non-zero value is passed, a
  2796. sequential data consistency will be enforced for all handles registered after
  2797. this function call, otherwise it is disabled. By default, StarPU enables
  2798. sequential data consistency. It is also possible to select the data consistency
  2799. mode of a specific data handle with the
  2800. @code{starpu_data_set_sequential_consistency_flag} function.
  2801. @item @emph{Prototype}:
  2802. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2803. @end table
  2804. @node starpu_data_get_default_sequential_consistency_flag
  2805. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2806. @table @asis
  2807. @item @emph{Description}:
  2808. This function returns the current default sequential consistency flag.
  2809. @item @emph{Prototype}:
  2810. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2811. @end table
  2812. @node starpu_data_set_sequential_consistency_flag
  2813. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2814. @table @asis
  2815. @item @emph{Description}:
  2816. Select the data consistency mode associated to a data handle. The consistency
  2817. mode set using this function has the priority over the default mode which can
  2818. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2819. @item @emph{Prototype}:
  2820. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2821. @end table
  2822. @node Performance Model API
  2823. @section Performance Model API
  2824. @menu
  2825. * starpu_load_history_debug::
  2826. * starpu_perfmodel_debugfilepath::
  2827. * starpu_perfmodel_get_arch_name::
  2828. * starpu_force_bus_sampling::
  2829. @end menu
  2830. @node starpu_load_history_debug
  2831. @subsection @code{starpu_load_history_debug}
  2832. @table @asis
  2833. @item @emph{Description}:
  2834. TODO
  2835. @item @emph{Prototype}:
  2836. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2837. @end table
  2838. @node starpu_perfmodel_debugfilepath
  2839. @subsection @code{starpu_perfmodel_debugfilepath}
  2840. @table @asis
  2841. @item @emph{Description}:
  2842. TODO
  2843. @item @emph{Prototype}:
  2844. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2845. @end table
  2846. @node starpu_perfmodel_get_arch_name
  2847. @subsection @code{starpu_perfmodel_get_arch_name}
  2848. @table @asis
  2849. @item @emph{Description}:
  2850. TODO
  2851. @item @emph{Prototype}:
  2852. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2853. @end table
  2854. @node starpu_force_bus_sampling
  2855. @subsection @code{starpu_force_bus_sampling}
  2856. @table @asis
  2857. @item @emph{Description}:
  2858. This forces sampling the bus performance model again.
  2859. @item @emph{Prototype}:
  2860. @code{void starpu_force_bus_sampling(void);}
  2861. @end table
  2862. @node Profiling API
  2863. @section Profiling API
  2864. @menu
  2865. * starpu_profiling_status_set:: starpu_profiling_status_set
  2866. * starpu_profiling_status_get:: starpu_profiling_status_get
  2867. * struct starpu_task_profiling_info:: task profiling information
  2868. * struct starpu_worker_profiling_info:: worker profiling information
  2869. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2870. * struct starpu_bus_profiling_info:: bus profiling information
  2871. * starpu_bus_get_count::
  2872. * starpu_bus_get_id::
  2873. * starpu_bus_get_src::
  2874. * starpu_bus_get_dst::
  2875. * starpu_timing_timespec_delay_us::
  2876. * starpu_timing_timespec_to_us::
  2877. * starpu_bus_profiling_helper_display_summary::
  2878. @end menu
  2879. @node starpu_profiling_status_set
  2880. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2881. @table @asis
  2882. @item @emph{Description}:
  2883. Thie function sets the profiling status. Profiling is activated by passing
  2884. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2885. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2886. resets all profiling measurements. When profiling is enabled, the
  2887. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2888. to a valid @code{struct starpu_task_profiling_info} structure containing
  2889. information about the execution of the task.
  2890. @item @emph{Return value}:
  2891. Negative return values indicate an error, otherwise the previous status is
  2892. returned.
  2893. @item @emph{Prototype}:
  2894. @code{int starpu_profiling_status_set(int status);}
  2895. @end table
  2896. @node starpu_profiling_status_get
  2897. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2898. @table @asis
  2899. @item @emph{Description}:
  2900. Return the current profiling status or a negative value in case there was an error.
  2901. @item @emph{Prototype}:
  2902. @code{int starpu_profiling_status_get(void);}
  2903. @end table
  2904. @node struct starpu_task_profiling_info
  2905. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2906. @table @asis
  2907. @item @emph{Description}:
  2908. This structure contains information about the execution of a task. It is
  2909. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2910. structure if profiling was enabled.
  2911. @item @emph{Fields}:
  2912. @table @asis
  2913. @item @code{submit_time}:
  2914. Date of task submission (relative to the initialization of StarPU).
  2915. @item @code{start_time}:
  2916. Date of task execution beginning (relative to the initialization of StarPU).
  2917. @item @code{end_time}:
  2918. Date of task execution termination (relative to the initialization of StarPU).
  2919. @item @code{workerid}:
  2920. Identifier of the worker which has executed the task.
  2921. @end table
  2922. @end table
  2923. @node struct starpu_worker_profiling_info
  2924. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2925. @table @asis
  2926. @item @emph{Description}:
  2927. This structure contains the profiling information associated to a worker.
  2928. @item @emph{Fields}:
  2929. @table @asis
  2930. @item @code{start_time}:
  2931. Starting date for the reported profiling measurements.
  2932. @item @code{total_time}:
  2933. Duration of the profiling measurement interval.
  2934. @item @code{executing_time}:
  2935. Time spent by the worker to execute tasks during the profiling measurement interval.
  2936. @item @code{sleeping_time}:
  2937. Time spent idling by the worker during the profiling measurement interval.
  2938. @item @code{executed_tasks}:
  2939. Number of tasks executed by the worker during the profiling measurement interval.
  2940. @end table
  2941. @end table
  2942. @node starpu_worker_get_profiling_info
  2943. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2944. @table @asis
  2945. @item @emph{Description}:
  2946. Get the profiling info associated to the worker identified by @code{workerid},
  2947. and reset the profiling measurements. If the @code{worker_info} argument is
  2948. NULL, only reset the counters associated to worker @code{workerid}.
  2949. @item @emph{Return value}:
  2950. Upon successful completion, this function returns 0. Otherwise, a negative
  2951. value is returned.
  2952. @item @emph{Prototype}:
  2953. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2954. @end table
  2955. @node struct starpu_bus_profiling_info
  2956. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2957. @table @asis
  2958. @item @emph{Description}:
  2959. TODO
  2960. @item @emph{Fields}:
  2961. @table @asis
  2962. @item @code{start_time}:
  2963. TODO
  2964. @item @code{total_time}:
  2965. TODO
  2966. @item @code{transferred_bytes}:
  2967. TODO
  2968. @item @code{transfer_count}:
  2969. TODO
  2970. @end table
  2971. @end table
  2972. @node starpu_bus_get_count
  2973. @subsection @code{starpu_bus_get_count}
  2974. @table @asis
  2975. @item @emph{Description}:
  2976. TODO
  2977. @item @emph{Prototype}:
  2978. @code{int starpu_bus_get_count(void);}
  2979. @end table
  2980. @node starpu_bus_get_id
  2981. @subsection @code{starpu_bus_get_id}
  2982. @table @asis
  2983. @item @emph{Description}:
  2984. TODO
  2985. @item @emph{Prototype}:
  2986. @code{int starpu_bus_get_id(int src, int dst);}
  2987. @end table
  2988. @node starpu_bus_get_src
  2989. @subsection @code{starpu_bus_get_src}
  2990. @table @asis
  2991. @item @emph{Description}:
  2992. TODO
  2993. @item @emph{Prototype}:
  2994. @code{int starpu_bus_get_src(int busid);}
  2995. @end table
  2996. @node starpu_bus_get_dst
  2997. @subsection @code{starpu_bus_get_dst}
  2998. @table @asis
  2999. @item @emph{Description}:
  3000. TODO
  3001. @item @emph{Prototype}:
  3002. @code{int starpu_bus_get_dst(int busid);}
  3003. @end table
  3004. @node starpu_timing_timespec_delay_us
  3005. @subsection @code{starpu_timing_timespec_delay_us}
  3006. @table @asis
  3007. @item @emph{Description}:
  3008. TODO
  3009. @item @emph{Prototype}:
  3010. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3011. @end table
  3012. @node starpu_timing_timespec_to_us
  3013. @subsection @code{starpu_timing_timespec_to_us}
  3014. @table @asis
  3015. @item @emph{Description}:
  3016. TODO
  3017. @item @emph{Prototype}:
  3018. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3019. @end table
  3020. @node starpu_bus_profiling_helper_display_summary
  3021. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3022. @table @asis
  3023. @item @emph{Description}:
  3024. TODO
  3025. @item @emph{Prototype}:
  3026. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3027. @end table
  3028. @node CUDA extensions
  3029. @section CUDA extensions
  3030. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3031. @menu
  3032. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3033. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3034. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3035. @end menu
  3036. @node starpu_cuda_get_local_stream
  3037. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3038. @table @asis
  3039. @item @emph{Description}:
  3040. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3041. function is only provided for convenience so that programmers can easily use
  3042. asynchronous operations within codelets without having to create a stream by
  3043. hand. Note that the application is not forced to use the stream provided by
  3044. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3045. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3046. the likelihood of having all transfers overlapped.
  3047. @item @emph{Prototype}:
  3048. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3049. @end table
  3050. @node starpu_helper_cublas_init
  3051. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3052. @table @asis
  3053. @item @emph{Description}:
  3054. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3055. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3056. controlled by StarPU. This call blocks until CUBLAS has been properly
  3057. initialized on every device.
  3058. @item @emph{Prototype}:
  3059. @code{void starpu_helper_cublas_init(void);}
  3060. @end table
  3061. @node starpu_helper_cublas_shutdown
  3062. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3063. @table @asis
  3064. @item @emph{Description}:
  3065. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3066. @item @emph{Prototype}:
  3067. @code{void starpu_helper_cublas_shutdown(void);}
  3068. @end table
  3069. @node OpenCL extensions
  3070. @section OpenCL extensions
  3071. @menu
  3072. * Enabling OpenCL:: Enabling OpenCL
  3073. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3074. * Loading OpenCL kernels:: Loading OpenCL kernels
  3075. @end menu
  3076. @node Enabling OpenCL
  3077. @subsection Enabling OpenCL
  3078. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3079. enabled by default. To enable OpenCL, you need either to disable CUDA
  3080. when configuring StarPU:
  3081. @example
  3082. % ./configure --disable-cuda
  3083. @end example
  3084. or when running applications:
  3085. @example
  3086. % STARPU_NCUDA=0 ./application
  3087. @end example
  3088. OpenCL will automatically be started on any device not yet used by
  3089. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3090. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3091. so:
  3092. @example
  3093. % STARPU_NCUDA=2 ./application
  3094. @end example
  3095. @node Compiling OpenCL kernels
  3096. @subsection Compiling OpenCL kernels
  3097. Source codes for OpenCL kernels can be stored in a file or in a
  3098. string. StarPU provides functions to build the program executable for
  3099. each available OpenCL device as a @code{cl_program} object. This
  3100. program executable can then be loaded within a specific queue as
  3101. explained in the next section. These are only helpers, Applications
  3102. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3103. use (e.g. different programs on the different OpenCL devices, for
  3104. relocation purpose for instance).
  3105. @menu
  3106. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3107. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3108. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3109. @end menu
  3110. @node starpu_opencl_load_opencl_from_file
  3111. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3112. @table @asis
  3113. @item @emph{Description}:
  3114. TODO
  3115. @item @emph{Prototype}:
  3116. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3117. @end table
  3118. @node starpu_opencl_load_opencl_from_string
  3119. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3120. @table @asis
  3121. @item @emph{Description}:
  3122. TODO
  3123. @item @emph{Prototype}:
  3124. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3125. @end table
  3126. @node starpu_opencl_unload_opencl
  3127. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3128. @table @asis
  3129. @item @emph{Description}:
  3130. TODO
  3131. @item @emph{Prototype}:
  3132. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3133. @end table
  3134. @node Loading OpenCL kernels
  3135. @subsection Loading OpenCL kernels
  3136. @menu
  3137. * starpu_opencl_load_kernel:: Loading a kernel
  3138. * starpu_opencl_relase_kernel:: Releasing a kernel
  3139. @end menu
  3140. @node starpu_opencl_load_kernel
  3141. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3142. @table @asis
  3143. @item @emph{Description}:
  3144. TODO
  3145. @item @emph{Prototype}:
  3146. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3147. }
  3148. @end table
  3149. @node starpu_opencl_relase_kernel
  3150. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3151. @table @asis
  3152. @item @emph{Description}:
  3153. TODO
  3154. @item @emph{Prototype}:
  3155. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3156. @end table
  3157. @node Cell extensions
  3158. @section Cell extensions
  3159. nothing yet.
  3160. @node Miscellaneous helpers
  3161. @section Miscellaneous helpers
  3162. @menu
  3163. * starpu_data_cpy:: Copy a data handle into another data handle
  3164. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3165. @end menu
  3166. @node starpu_data_cpy
  3167. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3168. @table @asis
  3169. @item @emph{Description}:
  3170. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3171. The @code{asynchronous} parameter indicates whether the function should
  3172. block or not. In the case of an asynchronous call, it is possible to
  3173. synchronize with the termination of this operation either by the means of
  3174. implicit dependencies (if enabled) or by calling
  3175. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3176. this callback function is executed after the handle has been copied, and it is
  3177. given the @code{callback_arg} pointer as argument.
  3178. @item @emph{Prototype}:
  3179. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3180. @end table
  3181. @node starpu_execute_on_each_worker
  3182. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3183. @table @asis
  3184. @item @emph{Description}:
  3185. When calling this method, the offloaded function specified by the first argument is
  3186. executed by every StarPU worker that may execute the function.
  3187. The second argument is passed to the offloaded function.
  3188. The last argument specifies on which types of processing units the function
  3189. should be executed. Similarly to the @code{where} field of the
  3190. @code{starpu_codelet} structure, it is possible to specify that the function
  3191. should be executed on every CUDA device and every CPU by passing
  3192. @code{STARPU_CPU|STARPU_CUDA}.
  3193. This function blocks until the function has been executed on every appropriate
  3194. processing units, so that it may not be called from a callback function for
  3195. instance.
  3196. @item @emph{Prototype}:
  3197. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3198. @end table
  3199. @c ---------------------------------------------------------------------
  3200. @c Advanced Topics
  3201. @c ---------------------------------------------------------------------
  3202. @node Advanced Topics
  3203. @chapter Advanced Topics
  3204. @menu
  3205. * Defining a new data interface::
  3206. * Defining a new scheduling policy::
  3207. @end menu
  3208. @node Defining a new data interface
  3209. @section Defining a new data interface
  3210. @menu
  3211. * struct starpu_data_interface_ops_t:: Per-interface methods
  3212. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3213. * An example of data interface:: An example of data interface
  3214. @end menu
  3215. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3216. @node struct starpu_data_interface_ops_t
  3217. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3218. @table @asis
  3219. @item @emph{Description}:
  3220. TODO describe all the different fields
  3221. @end table
  3222. @node struct starpu_data_copy_methods
  3223. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3224. @table @asis
  3225. @item @emph{Description}:
  3226. TODO describe all the different fields
  3227. @end table
  3228. @node An example of data interface
  3229. @subsection An example of data interface
  3230. @table @asis
  3231. TODO
  3232. @end table
  3233. @node Defining a new scheduling policy
  3234. @section Defining a new scheduling policy
  3235. TODO
  3236. A full example showing how to define a new scheduling policy is available in
  3237. the StarPU sources in the directory @code{examples/scheduler/}.
  3238. @menu
  3239. * struct starpu_sched_policy_s::
  3240. * starpu_worker_set_sched_condition::
  3241. * starpu_sched_set_min_priority:: Set the minimum priority level
  3242. * starpu_sched_set_max_priority:: Set the maximum priority level
  3243. * Source code::
  3244. @end menu
  3245. @node struct starpu_sched_policy_s
  3246. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3247. @table @asis
  3248. @item @emph{Description}:
  3249. This structure contains all the methods that implement a scheduling policy. An
  3250. application may specify which scheduling strategy in the @code{sched_policy}
  3251. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3252. function.
  3253. @item @emph{Fields}:
  3254. @table @asis
  3255. @item @code{init_sched}:
  3256. Initialize the scheduling policy.
  3257. @item @code{deinit_sched}:
  3258. Cleanup the scheduling policy.
  3259. @item @code{push_task}:
  3260. Insert a task into the scheduler.
  3261. @item @code{push_prio_task}:
  3262. Insert a priority task into the scheduler.
  3263. @item @code{pop_task}:
  3264. Get a task from the scheduler. The mutex associated to the worker is already
  3265. taken when this method is called.
  3266. @item @code{pop_every_task}:
  3267. Remove all available tasks from the scheduler (tasks are chained by the means
  3268. of the prev and next fields of the starpu_task structure). The mutex associated
  3269. to the worker is already taken when this method is called.
  3270. @item @code{post_exec_hook} (optionnal):
  3271. This method is called every time a task has been executed.
  3272. @item @code{policy_name}:
  3273. Name of the policy (optionnal).
  3274. @item @code{policy_description}:
  3275. Description of the policy (optionnal).
  3276. @end table
  3277. @end table
  3278. @node starpu_worker_set_sched_condition
  3279. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3280. @table @asis
  3281. @item @emph{Description}:
  3282. When there is no available task for a worker, StarPU blocks this worker on a
  3283. condition variable. This function specifies which condition variable (and the
  3284. associated mutex) should be used to block (and to wake up) a worker. Note that
  3285. multiple workers may use the same condition variable. For instance, in the case
  3286. of a scheduling strategy with a single task queue, the same condition variable
  3287. would be used to block and wake up all workers.
  3288. The initialization method of a scheduling strategy (@code{init_sched}) must
  3289. call this function once per worker.
  3290. @item @emph{Prototype}:
  3291. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3292. @end table
  3293. @node starpu_sched_set_min_priority
  3294. @subsection @code{starpu_sched_set_min_priority}
  3295. @table @asis
  3296. @item @emph{Description}:
  3297. Defines the minimum priority level supported by the scheduling policy. The
  3298. default minimum priority level is the same as the default priority level which
  3299. is 0 by convention. The application may access that value by calling the
  3300. @code{starpu_sched_get_min_priority} function. This function should only be
  3301. called from the initialization method of the scheduling policy, and should not
  3302. be used directly from the application.
  3303. @item @emph{Prototype}:
  3304. @code{void starpu_sched_set_min_priority(int min_prio)}
  3305. @end table
  3306. @node starpu_sched_set_max_priority
  3307. @subsection @code{starpu_sched_set_max_priority}
  3308. @table @asis
  3309. @item @emph{Description}:
  3310. Defines the maximum priority level supported by the scheduling policy. The
  3311. default maximum priority level is 1. The application may access that value by
  3312. calling the @code{starpu_sched_get_max_priority} function. This function should
  3313. only be called from the initialization method of the scheduling policy, and
  3314. should not be used directly from the application.
  3315. @item @emph{Prototype}:
  3316. @code{void starpu_sched_set_min_priority(int max_prio)}
  3317. @end table
  3318. @node Source code
  3319. @subsection Source code
  3320. @cartouche
  3321. @smallexample
  3322. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3323. .init_sched = init_dummy_sched,
  3324. .deinit_sched = deinit_dummy_sched,
  3325. .push_task = push_task_dummy,
  3326. .push_prio_task = NULL,
  3327. .pop_task = pop_task_dummy,
  3328. .post_exec_hook = NULL,
  3329. .pop_every_task = NULL,
  3330. .policy_name = "dummy",
  3331. .policy_description = "dummy scheduling strategy"
  3332. @};
  3333. @end smallexample
  3334. @end cartouche
  3335. @c ---------------------------------------------------------------------
  3336. @c Appendices
  3337. @c ---------------------------------------------------------------------
  3338. @c ---------------------------------------------------------------------
  3339. @c Full source code for the 'Scaling a Vector' example
  3340. @c ---------------------------------------------------------------------
  3341. @node Full source code for the 'Scaling a Vector' example
  3342. @appendix Full source code for the 'Scaling a Vector' example
  3343. @menu
  3344. * Main application::
  3345. * CPU Kernel::
  3346. * CUDA Kernel::
  3347. * OpenCL Kernel::
  3348. @end menu
  3349. @node Main application
  3350. @section Main application
  3351. @smallexample
  3352. @include vector_scal_c.texi
  3353. @end smallexample
  3354. @node CPU Kernel
  3355. @section CPU Kernel
  3356. @smallexample
  3357. @include vector_scal_cpu.texi
  3358. @end smallexample
  3359. @node CUDA Kernel
  3360. @section CUDA Kernel
  3361. @smallexample
  3362. @include vector_scal_cuda.texi
  3363. @end smallexample
  3364. @node OpenCL Kernel
  3365. @section OpenCL Kernel
  3366. @menu
  3367. * Invoking the kernel::
  3368. * Source of the kernel::
  3369. @end menu
  3370. @node Invoking the kernel
  3371. @subsection Invoking the kernel
  3372. @smallexample
  3373. @include vector_scal_opencl.texi
  3374. @end smallexample
  3375. @node Source of the kernel
  3376. @subsection Source of the kernel
  3377. @smallexample
  3378. @include vector_scal_opencl_codelet.texi
  3379. @end smallexample
  3380. @bye