| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 | /* dspevd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dspevd_(char *jobz, char *uplo, integer *n, doublereal *	ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 	integer *lwork, integer *iwork, integer *liwork, integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal eps;    integer inde;    doublereal anrm, rmin, rmax;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal sigma;    extern logical _starpu_lsame_(char *, char *);    integer iinfo, lwmin;    logical wantz;    extern doublereal _starpu_dlamch_(char *);    integer iscale;    extern /* Subroutine */ int _starpu_dstedc_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    integer *, integer *, integer *);    doublereal safmin;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    extern doublereal _starpu_dlansp_(char *, char *, integer *, doublereal *, 	    doublereal *);    integer indtau;    extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *, 	     integer *);    integer indwrk, liwmin;    extern /* Subroutine */ int _starpu_dsptrd_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    _starpu_dopmtr_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *);    integer llwork;    doublereal smlnum;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSPEVD computes all the eigenvalues and, optionally, eigenvectors *//*  of a real symmetric matrix A in packed storage. If eigenvectors are *//*  desired, it uses a divide and conquer algorithm. *//*  The divide and conquer algorithm makes very mild assumptions about *//*  floating point arithmetic. It will work on machines with a guard *//*  digit in add/subtract, or on those binary machines without guard *//*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or *//*  Cray-2. It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          A, packed columnwise in a linear array.  The j-th column of A *//*          is stored in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. *//*          On exit, AP is overwritten by values generated during the *//*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal *//*          and first superdiagonal of the tridiagonal matrix T overwrite *//*          the corresponding elements of A, and if UPLO = 'L', the *//*          diagonal and first subdiagonal of T overwrite the *//*          corresponding elements of A. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, the eigenvalues in ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal *//*          eigenvectors of the matrix A, with the i-th column of Z *//*          holding the eigenvector associated with W(i). *//*          If JOBZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, *//*                                         dimension (LWORK) *//*          On exit, if INFO = 0, WORK(1) returns the required LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          If N <= 1,               LWORK must be at least 1. *//*          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. *//*          If JOBZ = 'V' and N > 1, LWORK must be at least *//*                                                 1 + 6*N + N**2. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the required sizes of the WORK and IWORK *//*          arrays, returns these values as the first entries of the WORK *//*          and IWORK arrays, and no error message related to LWORK or *//*          LIWORK is issued by XERBLA. *//*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) *//*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK. *//*          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1. *//*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N. *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the required sizes of the WORK and *//*          IWORK arrays, returns these values as the first entries of *//*          the WORK and IWORK arrays, and no error message related to *//*          LWORK or LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = i, the algorithm failed to converge; i *//*                off-diagonal elements of an intermediate tridiagonal *//*                form did not converge to zero. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    --iwork;    /* Function Body */    wantz = _starpu_lsame_(jobz, "V");    lquery = *lwork == -1 || *liwork == -1;    *info = 0;    if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -1;    } else if (! (_starpu_lsame_(uplo, "U") || _starpu_lsame_(uplo, 	    "L"))) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ldz < 1 || wantz && *ldz < *n) {	*info = -7;    }    if (*info == 0) {	if (*n <= 1) {	    liwmin = 1;	    lwmin = 1;	} else {	    if (wantz) {		liwmin = *n * 5 + 3;/* Computing 2nd power */		i__1 = *n;		lwmin = *n * 6 + 1 + i__1 * i__1;	    } else {		liwmin = 1;		lwmin = *n << 1;	    }	}	iwork[1] = liwmin;	work[1] = (doublereal) lwmin;	if (*lwork < lwmin && ! lquery) {	    *info = -9;	} else if (*liwork < liwmin && ! lquery) {	    *info = -11;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSPEVD", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	w[1] = ap[1];	if (wantz) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }/*     Get machine constants. */    safmin = _starpu_dlamch_("Safe minimum");    eps = _starpu_dlamch_("Precision");    smlnum = safmin / eps;    bignum = 1. / smlnum;    rmin = sqrt(smlnum);    rmax = sqrt(bignum);/*     Scale matrix to allowable range, if necessary. */    anrm = _starpu_dlansp_("M", uplo, n, &ap[1], &work[1]);    iscale = 0;    if (anrm > 0. && anrm < rmin) {	iscale = 1;	sigma = rmin / anrm;    } else if (anrm > rmax) {	iscale = 1;	sigma = rmax / anrm;    }    if (iscale == 1) {	i__1 = *n * (*n + 1) / 2;	_starpu_dscal_(&i__1, &sigma, &ap[1], &c__1);    }/*     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */    inde = 1;    indtau = inde + *n;    _starpu_dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call *//*     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the *//*     tridiagonal matrix, then call DOPMTR to multiply it by the *//*     Householder transformations represented in AP. */    if (! wantz) {	_starpu_dsterf_(n, &w[1], &work[inde], info);    } else {	indwrk = indtau + *n;	llwork = *lwork - indwrk + 1;	_starpu_dstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk], &llwork, &iwork[1], liwork, info);	_starpu_dopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], 		ldz, &work[indwrk], &iinfo);    }/*     If matrix was scaled, then rescale eigenvalues appropriately. */    if (iscale == 1) {	d__1 = 1. / sigma;	_starpu_dscal_(n, &d__1, &w[1], &c__1);    }    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    return 0;/*     End of DSPEVD */} /* _starpu_dspevd_ */
 |