matmul.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010,2011, 2015 University of Bordeaux
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #ifdef __APPLE_CC__
  17. #include <OpenCL/opencl.h>
  18. #else
  19. #include <CL/cl.h>
  20. #endif
  21. #include <stdio.h>
  22. #include <string.h>
  23. #include <stdlib.h>
  24. #include <stdint.h>
  25. #include <unistd.h>
  26. #include <assert.h>
  27. #include <math.h>
  28. #include <sys/time.h>
  29. #define error(...) do { fprintf(stderr, "Error: " __VA_ARGS__); exit(EXIT_FAILURE); } while(0)
  30. #define check(exp) do { err = exp; if(err != CL_SUCCESS) { fprintf(stderr, "OpenCL Error (%d): " #exp "\n", err); exit(EXIT_FAILURE); }} while(0)
  31. #define check2(exp) exp; if(err != CL_SUCCESS) { fprintf(stderr, "OpenCL Error (%d): " #exp "\n", err); exit(EXIT_FAILURE); }
  32. #define check3(exp, err) do { if(err != CL_SUCCESS) { fprintf(stderr, "OpenCL Error (%d): " #exp "\n", err); exit(EXIT_FAILURE); } } while(0)
  33. // Thread block size
  34. #define BLOCK_SIZE 16 // Kernel thread-block size
  35. #define WORK_SIZE 64 // Kernel global size in lines of A (or C)
  36. #define TYPE float
  37. // Basic Matrix dimensions
  38. #define WA (128L * BLOCK_SIZE) // Matrix A width
  39. #ifdef STARPU_QUICK_CHECK
  40. #define HA (128L * BLOCK_SIZE) // Matrix A height
  41. #else
  42. #define HA (512L * BLOCK_SIZE) // Matrix A height
  43. #endif
  44. #define WB (128L * BLOCK_SIZE) // Matrix B width
  45. #define HB WA // Matrix B height
  46. #define WC WB // Matrix C width
  47. #define HC HA // Matrix C height
  48. #define BLOCKS (HA / WORK_SIZE)
  49. ////////////////////////////////////////////////////////////////////////////////
  50. // declaration, forward
  51. void printDiff(TYPE*, TYPE*, int, int, int, TYPE);
  52. void computeReference(TYPE*, const TYPE*, const TYPE*, unsigned int, unsigned int, unsigned int);
  53. #define str(x) #x
  54. #define CODE "\
  55. #define TYPE float\n\
  56. __kernel void sgemmNN(int wa, int ha, int wb, __global TYPE* A, __global TYPE* B, __global TYPE* C) {\n\
  57. #define BS 16\n\
  58. #define BLOCK_SIZE 16\n\
  59. int bx = get_group_id(0);\n\
  60. int by = get_group_id(1);\n\
  61. \n\
  62. int tx = get_local_id(0);\n\
  63. int ty = get_local_id(1);\n\
  64. \n\
  65. int gx = get_global_id(0);\n\
  66. int gy = get_global_id(1);\n\
  67. __local float As[BS][BS+1];\
  68. __local float Bs[BS][BS+1];\
  69. \n\
  70. unsigned int block_w = min(wb - bx * BLOCK_SIZE, BLOCK_SIZE);\n\
  71. unsigned int block_h = min(ha - by * BLOCK_SIZE, BLOCK_SIZE);\n\
  72. \n\
  73. int valid = (gx < wb && gy < ha);\n\
  74. \n\
  75. TYPE Csub = (TYPE)0.0;\n\
  76. \n\
  77. int pos = 0;\n\
  78. while (pos < wa) {\n\
  79. unsigned int size = min(wa-pos, BLOCK_SIZE);\n\
  80. if (tx < size && gy < ha)\n\
  81. As[tx][ty] = A[pos + tx + wa * gy];\n\
  82. if (ty < size && gx < wb)\n\
  83. Bs[tx][ty] = B[gx + wb * (pos+ty)];\n\
  84. \n\
  85. barrier(CLK_LOCAL_MEM_FENCE);\n\
  86. \n\
  87. if (valid) {\n\
  88. for (int k = 0; k < size; ++k)\n\
  89. Csub += As[k][ty] * Bs[tx][k];\n\
  90. }\n\
  91. pos += size;\n\
  92. barrier(CLK_LOCAL_MEM_FENCE);\n\
  93. }\n\
  94. \n\
  95. if (valid)\n\
  96. C[wb * gy + gx] = Csub;\n\
  97. }"
  98. static char * code = CODE;
  99. int check = 0;
  100. static void __attribute__((unused)) parse_args(int argc, const char **argv)
  101. {
  102. int i;
  103. for (i = 1; i < argc; i++)
  104. {
  105. if (strcmp(argv[i], "-check") == 0)
  106. {
  107. check = 1;
  108. }
  109. if (strcmp(argv[i], "-h") == 0)
  110. {
  111. printf("usage : %s [-check]\n", argv[0]);
  112. }
  113. }
  114. }
  115. // Round Up Division function
  116. size_t roundUp(int group_size, int global_size) {
  117. int r = global_size % group_size;
  118. if(r == 0) {
  119. return global_size;
  120. } else {
  121. return global_size + group_size - r;
  122. }
  123. }
  124. void fillArray(TYPE* data, int size) {
  125. int i;
  126. const TYPE fScale = (TYPE)(1.0f / (float)RAND_MAX);
  127. for (i = 0; i < size; ++i) {
  128. data[i] = fScale * rand();
  129. }
  130. }
  131. void printArray(float* data, int size) {
  132. int i;
  133. for (i = 0; i < size; ++i) {
  134. printf("%d: %.3f\n", i, data[i]);
  135. }
  136. }
  137. /**
  138. * Compare two float arrays using L2-norm with an epsilon tolerance for equality
  139. * @return shrTRUE if \a reference and \a data are identical, otherwise shrFALSE
  140. * @param reference handle to the reference data / gold image
  141. * @param data handle to the computed data
  142. * @param len number of elements in reference and data
  143. * @param epsilon epsilon to use for the comparison
  144. */
  145. int shrCompareL2fe( const float* reference, const float* data, const unsigned int len, const float epsilon ) {
  146. assert(epsilon >= 0);
  147. float error = 0;
  148. float ref = 0;
  149. unsigned int i;
  150. for(i = 0; i < len; ++i) {
  151. float diff = reference[i] - data[i];
  152. error += diff * diff;
  153. ref += reference[i] * reference[i];
  154. }
  155. float normRef = sqrtf(ref);
  156. if (fabs(ref) < 1e-7) {
  157. #ifdef _DEBUG
  158. fprintf(stderr, "ERROR, reference l2-norm is 0\n");
  159. #endif
  160. return 0;
  161. }
  162. float normError = sqrtf(error);
  163. error = normError / normRef;
  164. int result = error < epsilon;
  165. #ifdef _DEBUG
  166. if( !result) {
  167. fprintf(stderr, "ERROR, l2-norm error %d is greater than epsilon %lf \n", error, epsilon);
  168. }
  169. #endif
  170. return result;
  171. }
  172. int main(int argc, const char** argv) {
  173. cl_uint platform_count;
  174. cl_platform_id platforms[5];
  175. cl_int err = CL_SUCCESS;
  176. unsigned int i, p;
  177. cl_device_type dev_type = CL_DEVICE_TYPE_ALL;
  178. void * ptrs[BLOCKS];
  179. cl_command_queue cqs[BLOCKS];
  180. cl_mem d_A[BLOCKS];
  181. cl_mem d_C[BLOCKS];
  182. cl_mem d_B[BLOCKS];
  183. cl_event GPUDone[BLOCKS];
  184. cl_event GPUExecution[BLOCKS];
  185. struct timeval start, end;
  186. int workOffset[BLOCKS];
  187. int workSize[BLOCKS];
  188. unsigned int sizePerGPU = HC / BLOCKS;
  189. unsigned int sizeMod = HC % BLOCKS;
  190. size_t A_size = WA * HA;
  191. size_t A_mem_size = sizeof(TYPE) * A_size;
  192. TYPE* A_data;
  193. size_t B_size = WB * HB;
  194. size_t B_mem_size = sizeof(TYPE) * B_size;
  195. TYPE* B_data;
  196. size_t C_size = WC * HC;
  197. size_t C_mem_size = sizeof(TYPE) * C_size;
  198. TYPE* C_data;
  199. parse_args(argc, argv);
  200. check(clGetPlatformIDs(5, platforms, &platform_count));
  201. if (platform_count == 0) {
  202. printf("No platform found\n");
  203. exit(77);
  204. }
  205. cl_uint device_count;
  206. cl_uint devs[platform_count];
  207. cl_device_id * devices[platform_count];
  208. cl_context ctx[platform_count];
  209. cl_command_queue * commandQueue[platform_count];
  210. device_count = 0;
  211. for (p=0; p<platform_count; p++) {
  212. cl_platform_id platform = platforms[p];
  213. err = clGetDeviceIDs(platform, dev_type, 0, NULL, &devs[p]);
  214. if (err == CL_DEVICE_NOT_FOUND) {
  215. devs[p] = 0;
  216. continue;
  217. }
  218. if (devs[p] == 0) {
  219. printf("No OpenCL device found\n");
  220. exit(77);
  221. }
  222. if (err != CL_SUCCESS) {
  223. fprintf(stderr, "OpenCL Error (%d) in clGetDeviceIDs()\n", err);
  224. exit(EXIT_FAILURE);
  225. }
  226. if (devs[p] == 0)
  227. continue;
  228. devices[p] = (cl_device_id*)malloc(sizeof(cl_device_id) * devs[p]);
  229. commandQueue[p] = (cl_command_queue*)malloc(sizeof(cl_command_queue) * devs[p]);
  230. check(clGetDeviceIDs(platform, dev_type, devs[p], devices[p], NULL));
  231. cl_context_properties properties[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0};
  232. check2(ctx[p] = clCreateContext(properties, devs[p], devices[p], NULL, NULL, &err));
  233. for(i = 0; i < devs[p]; ++i)
  234. {
  235. cl_device_id device = devices[p][i];
  236. char name[2048];
  237. name[0] = '\0';
  238. clGetDeviceInfo(device, CL_DEVICE_NAME, 2048, name, NULL);
  239. printf("Device %d: %s\n", i, name);
  240. commandQueue[p][i] = clCreateCommandQueue(ctx[p], device, CL_QUEUE_PROFILING_ENABLE | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
  241. if (err == CL_INVALID_VALUE) {
  242. fprintf(stderr, "Invalid property for clCreateCommandQueue\n");
  243. exit(77);
  244. }
  245. check3("clCreateCommandQueue", err);
  246. }
  247. device_count += devs[p];
  248. }
  249. if (device_count == 0)
  250. error("No device found\n");
  251. cl_kernel multiplicationKernel[platform_count];
  252. printf("\nUsing Matrix Sizes: A(%lu x %lu), B(%lu x %lu), C(%lu x %lu)\n",
  253. (unsigned long)WA, (unsigned long)HA, (unsigned long)WB, (unsigned long)HB, (unsigned long)WC, (unsigned long)HC);
  254. // allocate host memory for matrices A, B and C
  255. A_data = (TYPE*)malloc(A_mem_size);
  256. if (A_data == NULL) {
  257. perror("malloc");
  258. exit(-1);
  259. }
  260. B_data = (TYPE*)malloc(B_mem_size);
  261. if (B_data == NULL) {
  262. perror("malloc");
  263. exit(-1);
  264. }
  265. C_data = (TYPE*) malloc(C_mem_size);
  266. if (C_data == NULL) {
  267. perror("malloc");
  268. exit(-1);
  269. }
  270. cl_program program[platform_count];
  271. for (p=0; p<platform_count; p++) {
  272. if (devs[p] == 0)
  273. continue;
  274. check2(program[p] = clCreateProgramWithSource(ctx[p], 1, (const char **)&code, NULL, &err));
  275. check(clBuildProgram(program[p], 0, NULL, NULL, NULL, NULL));
  276. check2(multiplicationKernel[p] = clCreateKernel(program[p], "sgemmNN", &err));
  277. }
  278. printf("Initializing data...\n");
  279. srand(2008);
  280. fillArray(A_data, A_size);
  281. fillArray(B_data, B_size);
  282. memset(C_data, 0, C_size);
  283. printf("Computing...\n");
  284. workOffset[0] = 0;
  285. gettimeofday(&start, NULL);
  286. size_t localWorkSize[] = {BLOCK_SIZE, BLOCK_SIZE};
  287. int c = 0;
  288. for (p=0; p<platform_count;p++) {
  289. for (i=0; i<devs[p]; i++) {
  290. check2(d_B[c] = clCreateBuffer(ctx[p], CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, HB * WB * sizeof(TYPE), B_data, &err));
  291. c++;
  292. }
  293. }
  294. for(i=0; i < BLOCKS; ++i)
  295. {
  296. int d = i % device_count;
  297. cl_uint platform = 0;
  298. // determine device platform
  299. int dev = d;
  300. for (platform = 0; platform < platform_count; platform++) {
  301. if ((cl_int)(dev - devs[platform]) < 0)
  302. break;
  303. dev -= devs[platform];
  304. }
  305. workSize[i] = (i < sizeMod) ? sizePerGPU+1 : sizePerGPU;
  306. check2(d_A[i] = clCreateBuffer(ctx[platform], CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, workSize[i] * WA * sizeof(TYPE), &A_data[workOffset[i] * WA], &err));
  307. check2(d_C[i] = clCreateBuffer(ctx[platform], CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, workSize[i] * WC * sizeof(TYPE), &C_data[workOffset[i] * WC], &err));
  308. check(clSetKernelArg(multiplicationKernel[platform], 0, sizeof(cl_int), &workSize[i]));
  309. check(clSetKernelArg(multiplicationKernel[platform], 1, sizeof(cl_int), &workSize[i]));
  310. check(clSetKernelArg(multiplicationKernel[platform], 2, sizeof(cl_int), &workSize[i]));
  311. check(clSetKernelArg(multiplicationKernel[platform], 3, sizeof(cl_mem), (void *) &d_A[i]));
  312. check(clSetKernelArg(multiplicationKernel[platform], 4, sizeof(cl_mem), (void *) &d_B[d]));
  313. check(clSetKernelArg(multiplicationKernel[platform], 5, sizeof(cl_mem), (void *) &d_C[i]));
  314. size_t globalWorkSize[] = {roundUp(BLOCK_SIZE,WC), roundUp(BLOCK_SIZE,workSize[i])};
  315. check(clEnqueueNDRangeKernel(commandQueue[platform][dev], multiplicationKernel[platform], 2, NULL, globalWorkSize, localWorkSize, 0, NULL, &GPUExecution[i]));
  316. // Non-blocking copy of result from device to host
  317. cqs[i] = commandQueue[platform][dev];
  318. check2(ptrs[i] = clEnqueueMapBuffer(cqs[i], d_C[i], CL_FALSE, CL_MAP_READ, 0, WC * sizeof(TYPE) * workSize[i], 1, &GPUExecution[i], &GPUDone[i], &err));
  319. if(i+1 < BLOCKS)
  320. workOffset[i + 1] = workOffset[i] + workSize[i];
  321. }
  322. // CPU sync with GPU
  323. for (p=0; p<platform_count;p++) {
  324. cl_uint dev;
  325. for (dev=0; dev<devs[p]; dev++) {
  326. clFinish(commandQueue[p][dev]);
  327. }
  328. }
  329. gettimeofday(&end, NULL);
  330. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  331. double dSeconds = timing/1000/1000;
  332. double dNumOps = 2.0 * (double)WA * (double)HA * (double)WB;
  333. double gflops = 1.0e-9 * dNumOps/dSeconds;
  334. printf("Throughput = %.4f GFlops/s, Time = %.5f s, Size = %.0f, NumDevsUsed = %d, Blocks = %ld, Workgroup = %zu\n",
  335. gflops, dSeconds, dNumOps, device_count, BLOCKS, localWorkSize[0] * localWorkSize[1]);
  336. // compute reference solution
  337. if (check) {
  338. printf("Comparing results with CPU computation... ");
  339. TYPE* reference = (TYPE*)malloc(C_mem_size);
  340. computeReference(reference, A_data, B_data, HA, WA, WB);
  341. // check result
  342. int res = shrCompareL2fe(reference, C_data, C_size, 1.0e-6f);
  343. if (res == 0) {
  344. printf("\n\n");
  345. printDiff(reference, C_data, WC, HC, 100, 1.0e-5f);
  346. }
  347. else printf("PASSED\n\n");
  348. free(reference);
  349. }
  350. for(i = 0; i < BLOCKS; i++)
  351. {
  352. clEnqueueUnmapMemObject(cqs[i], d_C[i], ptrs[i], 0, NULL, NULL);
  353. }
  354. for(i = 0; i < BLOCKS; i++)
  355. {
  356. clFinish(cqs[i]);
  357. }
  358. for (i=0; i<device_count; i++) {
  359. clReleaseMemObject(d_B[i]);
  360. }
  361. for(i = 0; i < BLOCKS; i++)
  362. {
  363. clReleaseMemObject(d_A[i]);
  364. clReleaseMemObject(d_C[i]);
  365. clReleaseEvent(GPUExecution[i]);
  366. clReleaseEvent(GPUDone[i]);
  367. }
  368. for (p=0; p<platform_count;p++) {
  369. if (devs[p] == 0)
  370. continue;
  371. check(clReleaseKernel(multiplicationKernel[p]));
  372. check(clReleaseProgram(program[p]));
  373. check(clReleaseContext(ctx[p]));
  374. cl_uint k;
  375. for(k = 0; k < devs[p]; ++k)
  376. {
  377. check(clReleaseCommandQueue(commandQueue[p][k]));
  378. }
  379. }
  380. free(A_data);
  381. free(B_data);
  382. free(C_data);
  383. return 0;
  384. }
  385. void printDiff(TYPE *data1, TYPE *data2, int width, int height, int listLength, TYPE listTol) {
  386. printf("Listing first %d Differences > %.6f...\n", listLength, listTol);
  387. int i,j,k;
  388. int error_count=0;
  389. for (j = 0; j < height; j++) {
  390. if (error_count < listLength) {
  391. printf("\n Row %d:\n", j);
  392. }
  393. for (i = 0; i < width; i++) {
  394. k = j * width + i;
  395. float diff = fabs(data1[k] - data2[k]);
  396. if (diff > listTol) {
  397. if (error_count < listLength) {
  398. printf(" Loc(%d,%d)\tCPU=%.5f\tGPU=%.5f\tDiff=%.6f\n", i, j, data1[k], data2[k], diff);
  399. }
  400. error_count++;
  401. }
  402. }
  403. }
  404. printf(" \n Total Errors = %d\n\n", error_count);
  405. }
  406. /**
  407. * Compute reference data set
  408. * C = A * B
  409. * @param C reference data, computed but preallocated
  410. * @param A matrix A as provided to device
  411. * @param B matrix B as provided to device
  412. * @param hA height of matrix A
  413. * @param wB width of matrix B
  414. */
  415. void computeReference(TYPE* C, const TYPE* A, const TYPE* B, unsigned int hA, unsigned int wA, unsigned int wB) {
  416. unsigned int i,j,k;
  417. for (i = 0; i < hA; ++i)
  418. for (j = 0; j < wB; ++j) {
  419. double sum = 0;
  420. for (k = 0; k < wA; ++k) {
  421. double a = A[i * wA + k];
  422. double b = B[k * wB + j];
  423. sum += a * b;
  424. }
  425. C[i * wB + j] = (TYPE)sum;
  426. }
  427. }