api.texi 185 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Standard memory library::
  11. * Workers' Properties::
  12. * Data Management::
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Multiformat Data Interface::
  16. * Codelets and Tasks::
  17. * Insert Task::
  18. * Explicit Dependencies::
  19. * Implicit Data Dependencies::
  20. * Performance Model API::
  21. * Profiling API::
  22. * Theoretical lower bound on execution time API::
  23. * CUDA extensions::
  24. * OpenCL extensions::
  25. * Miscellaneous helpers::
  26. * FXT Support::
  27. * MPI::
  28. * Task Bundles::
  29. * Task Lists::
  30. * Using Parallel Tasks::
  31. * Scheduling Contexts::
  32. * Scheduling Policy::
  33. * Running drivers::
  34. * Expert mode::
  35. @end menu
  36. @node Versioning
  37. @section Versioning
  38. @defmac STARPU_MAJOR_VERSION
  39. Define the major version of StarPU
  40. @end defmac
  41. @defmac STARPU_MINOR_VERSION
  42. Define the minor version of StarPU
  43. @end defmac
  44. @defmac STARPU_RELEASE_VERSION
  45. Define the release version of StarPU
  46. @end defmac
  47. @deftypefun void starpu_get_version (int *@var{major}, int *@var{minor}, int *@var{release})
  48. Return as 3 integers the release version of StarPU.
  49. @end deftypefun
  50. @node Initialization and Termination
  51. @section Initialization and Termination
  52. @deftp {Data Type} {struct starpu_driver}
  53. @table @asis
  54. @item @code{enum starpu_archtype type}
  55. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  56. STARPU_OPENCL_DRIVER are currently supported.
  57. @item @code{union id} Anonymous union
  58. @table @asis
  59. @item @code{unsigned cpu_id}
  60. Should only be used if type is STARPU_CPU_WORKER.
  61. @item @code{unsigned cuda_id}
  62. Should only be used if type is STARPU_CUDA_WORKER.
  63. @item @code{cl_device_id opencl_id}
  64. Should only be used if type is STARPU_OPENCL_WORKER.
  65. @end table
  66. @end table
  67. @end deftp
  68. @deftp {Data Type} {struct starpu_conf}
  69. This structure is passed to the @code{starpu_init} function in order
  70. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  71. When the default value is used, StarPU automatically selects the number of
  72. processing units and takes the default scheduling policy. The environment
  73. variables overwrite the equivalent parameters.
  74. @table @asis
  75. @item @code{const char *sched_policy_name} (default = NULL)
  76. This is the name of the scheduling policy. This can also be specified
  77. with the @code{STARPU_SCHED} environment variable.
  78. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  79. This is the definition of the scheduling policy. This field is ignored
  80. if @code{sched_policy_name} is set.
  81. @item @code{int ncpus} (default = -1)
  82. This is the number of CPU cores that StarPU can use. This can also be
  83. specified with the @code{STARPU_NCPU} environment variable.
  84. @item @code{int ncuda} (default = -1)
  85. This is the number of CUDA devices that StarPU can use. This can also
  86. be specified with the @code{STARPU_NCUDA} environment variable.
  87. @item @code{int nopencl} (default = -1)
  88. This is the number of OpenCL devices that StarPU can use. This can
  89. also be specified with the @code{STARPU_NOPENCL} environment variable.
  90. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  91. If this flag is set, the @code{workers_bindid} array indicates where the
  92. different workers are bound, otherwise StarPU automatically selects where to
  93. bind the different workers. This can also be specified with the
  94. @code{STARPU_WORKERS_CPUID} environment variable.
  95. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  96. If the @code{use_explicit_workers_bindid} flag is set, this array
  97. indicates where to bind the different workers. The i-th entry of the
  98. @code{workers_bindid} indicates the logical identifier of the
  99. processor which should execute the i-th worker. Note that the logical
  100. ordering of the CPUs is either determined by the OS, or provided by
  101. the @code{hwloc} library in case it is available.
  102. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  103. If this flag is set, the CUDA workers will be attached to the CUDA devices
  104. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  105. CUDA devices in a round-robin fashion. This can also be specified with the
  106. @code{STARPU_WORKERS_CUDAID} environment variable.
  107. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  108. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  109. contains the logical identifiers of the CUDA devices (as used by
  110. @code{cudaGetDevice}).
  111. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  112. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  113. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  114. the OpenCL devices in a round-robin fashion. This can also be specified with
  115. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  116. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  117. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  118. contains the logical identifiers of the OpenCL devices to be used.
  119. @item @code{int calibrate} (default = 0)
  120. If this flag is set, StarPU will calibrate the performance models when
  121. executing tasks. If this value is equal to @code{-1}, the default value is
  122. used. If the value is equal to @code{1}, it will force continuing
  123. calibration. If the value is equal to @code{2}, the existing performance
  124. models will be overwritten. This can also be specified with the
  125. @code{STARPU_CALIBRATE} environment variable.
  126. @item @code{int bus_calibrate} (default = 0)
  127. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  128. to @code{-1}, the default value is used. This can also be specified with the
  129. @code{STARPU_BUS_CALIBRATE} environment variable.
  130. @item @code{int single_combined_worker} (default = 0)
  131. By default, StarPU executes parallel tasks concurrently.
  132. Some parallel libraries (e.g. most OpenMP implementations) however do
  133. not support concurrent calls to parallel code. In such case, setting this flag
  134. makes StarPU only start one parallel task at a time (but other
  135. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  136. task scheduler will however still however still try varying combined worker
  137. sizes to look for the most efficient ones.
  138. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  139. @item @code{int disable_asynchronous_copy} (default = 0)
  140. This flag should be set to 1 to disable asynchronous copies between
  141. CPUs and all accelerators. This can also be specified with the
  142. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  143. The AMD implementation of OpenCL is known to
  144. fail when copying data asynchronously. When using this implementation,
  145. it is therefore necessary to disable asynchronous data transfers.
  146. This can also be specified at compilation time by giving to the
  147. configure script the option @code{--disable-asynchronous-copy}.
  148. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  149. This flag should be set to 1 to disable asynchronous copies between
  150. CPUs and CUDA accelerators. This can also be specified with the
  151. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  152. This can also be specified at compilation time by giving to the
  153. configure script the option @code{--disable-asynchronous-cuda-copy}.
  154. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  155. This flag should be set to 1 to disable asynchronous copies between
  156. CPUs and OpenCL accelerators. This can also be specified with the
  157. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  158. The AMD implementation of OpenCL is known to
  159. fail when copying data asynchronously. When using this implementation,
  160. it is therefore necessary to disable asynchronous data transfers.
  161. This can also be specified at compilation time by giving to the
  162. configure script the option @code{--disable-asynchronous-opencl-copy}.
  163. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  164. This can be set to an array of CUDA device identifiers for which
  165. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  166. size is specified by the @code{n_cuda_opengl_interoperability} field below
  167. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  168. This has to be set to the size of the array pointed to by the
  169. @code{cuda_opengl_interoperability} field.
  170. @item @code{struct starpu_driver *not_launched_drivers}
  171. The drivers that should not be launched by StarPU.
  172. @item @code{unsigned n_not_launched_drivers}
  173. The number of StarPU drivers that should not be launched by StarPU.
  174. @item @code{trace_buffer_size}
  175. Specifies the buffer size used for FxT tracing. Starting from FxT version
  176. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  177. still be interesting to specify a bigger value to avoid any flushing (which
  178. would disturb the trace).
  179. @end table
  180. @end deftp
  181. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  182. This is StarPU initialization method, which must be called prior to any other
  183. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  184. policy, number of cores, ...) by passing a non-null argument. Default
  185. configuration is used if the passed argument is @code{NULL}.
  186. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  187. indicates that no worker was available (so that StarPU was not initialized).
  188. @end deftypefun
  189. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  190. This function initializes the @var{conf} structure passed as argument
  191. with the default values. In case some configuration parameters are already
  192. specified through environment variables, @code{starpu_conf_init} initializes
  193. the fields of the structure according to the environment variables. For
  194. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  195. @code{.calibrate} field of the structure passed as argument.
  196. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  197. indicates that the argument was NULL.
  198. @end deftypefun
  199. @deftypefun void starpu_shutdown (void)
  200. This is StarPU termination method. It must be called at the end of the
  201. application: statistics and other post-mortem debugging information are not
  202. guaranteed to be available until this method has been called.
  203. @end deftypefun
  204. @deftypefun int starpu_asynchronous_copy_disabled (void)
  205. Return 1 if asynchronous data transfers between CPU and accelerators
  206. are disabled.
  207. @end deftypefun
  208. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  209. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  210. are disabled.
  211. @end deftypefun
  212. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  213. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  214. are disabled.
  215. @end deftypefun
  216. @node Standard memory library
  217. @section Standard memory library
  218. @defmac STARPU_MALLOC_PINNED
  219. Value passed to the function @code{starpu_malloc_flags} to
  220. indicate the memory allocation should be pinned.
  221. @end defmac
  222. @defmac STARPU_MALLOC_COUNT
  223. Value passed to the function @code{starpu_malloc_flags} to
  224. indicate the memory allocation should be in the limit defined by
  225. the environment variables @code{STARPU_LIMIT_CUDA_devid_MEM},
  226. @code{STARPU_LIMIT_CUDA_MEM}, @code{STARPU_LIMIT_OPENCL_devid_MEM},
  227. @code{STARPU_LIMIT_OPENCL_MEM} and @code{STARPU_LIMIT_CPU_MEM}
  228. (@pxref{Limit memory}). If no memory is available, it tries to reclaim
  229. memory from StarPU. Memory allocated this way needs to be freed by
  230. calling the @code{starpu_free_flags} function with the same flag.
  231. @end defmac
  232. @deftypefun int starpu_malloc_flags (void **@var{A}, size_t @var{dim}, int @var{flags})
  233. Performs a memory allocation based on the constraints defined by the
  234. given @var{flag}.
  235. @end deftypefun
  236. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  237. This functions sets an alignment constraints for @code{starpu_malloc}
  238. allocations. @var{align} must be a power of two. This is for instance called
  239. automatically by the OpenCL driver to specify its own alignment constraints.
  240. @end deftypefun
  241. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  242. This function allocates data of the given size in main memory. It will also try to pin it in
  243. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  244. thus permit data transfer and computation overlapping. The allocated buffer must
  245. be freed thanks to the @code{starpu_free} function.
  246. @end deftypefun
  247. @deftypefun int starpu_free (void *@var{A})
  248. This function frees memory which has previously been allocated with
  249. @code{starpu_malloc}.
  250. @end deftypefun
  251. @deftypefun int starpu_free_flags (void *@var{A}, size_t @var{dim}, int @var{flags})
  252. This function frees memory by specifying its size. The given
  253. @var{flags} should be consistent with the ones given to
  254. @code{starpu_malloc_flags} when allocating the memory.
  255. @end deftypefun
  256. @deftypefun ssize_t starpu_memory_get_available (unsigned @var{node})
  257. If a memory limit is defined on the given node (@pxref{Limit memory}),
  258. return the amount of available memory on the node. Otherwise return
  259. @code{-1}.
  260. @end deftypefun
  261. @node Workers' Properties
  262. @section Workers' Properties
  263. @deftp {Data Type} {enum starpu_archtype}
  264. The different values are:
  265. @table @asis
  266. @item @code{STARPU_CPU_WORKER}
  267. @item @code{STARPU_CUDA_WORKER}
  268. @item @code{STARPU_OPENCL_WORKER}
  269. @end table
  270. @end deftp
  271. @deftypefun unsigned starpu_worker_get_count (void)
  272. This function returns the number of workers (i.e. processing units executing
  273. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  274. @end deftypefun
  275. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  276. Returns the number of workers of the given @var{type}. A positive
  277. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  278. the type is not valid otherwise.
  279. @end deftypefun
  280. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  281. This function returns the number of CPUs controlled by StarPU. The returned
  282. value should be at most @code{STARPU_MAXCPUS}.
  283. @end deftypefun
  284. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  285. This function returns the number of CUDA devices controlled by StarPU. The returned
  286. value should be at most @code{STARPU_MAXCUDADEVS}.
  287. @end deftypefun
  288. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  289. This function returns the number of OpenCL devices controlled by StarPU. The returned
  290. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  291. @end deftypefun
  292. @deftypefun int starpu_worker_get_id (void)
  293. This function returns the identifier of the current worker, i.e the one associated to the calling
  294. thread. The returned value is either -1 if the current context is not a StarPU
  295. worker (i.e. when called from the application outside a task or a callback), or
  296. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  297. @end deftypefun
  298. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  299. This function gets the list of identifiers of workers with the given
  300. type. It fills the workerids array with the identifiers of the workers that have the type
  301. indicated in the first argument. The maxsize argument indicates the size of the
  302. workids array. The returned value gives the number of identifiers that were put
  303. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  304. workers with the appropriate type: in that case, the array is filled with the
  305. maxsize first elements. To avoid such overflows, the value of maxsize can be
  306. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  307. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  308. @end deftypefun
  309. @deftypefun int starpu_worker_get_by_type ({enum starpu_archtype} @var{type}, int @var{num})
  310. This returns the identifier of the @var{num}-th worker that has the specified type
  311. @var{type}. If there are no such worker, -1 is returned.
  312. @end deftypefun
  313. @deftypefun int starpu_worker_get_by_devid ({enum starpu_archtype} @var{type}, int @var{devid})
  314. This returns the identifier of the worker that has the specified type
  315. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  316. skipped for instance). If there are no such worker, -1 is returned.
  317. @end deftypefun
  318. @deftypefun int starpu_worker_get_devid (int @var{id})
  319. This functions returns the device id of the given worker. The worker
  320. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  321. CUDA worker, this device identifier is the logical device identifier exposed by
  322. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  323. identifier of a CPU worker is the logical identifier of the core on which the
  324. worker was bound; this identifier is either provided by the OS or by the
  325. @code{hwloc} library in case it is available.
  326. @end deftypefun
  327. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  328. This function returns the type of processing unit associated to a
  329. worker. The worker identifier is a value returned by the
  330. @code{starpu_worker_get_id} function). The returned value
  331. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  332. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  333. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  334. identifier is unspecified.
  335. @end deftypefun
  336. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  337. This function allows to get the name of a given worker.
  338. StarPU associates a unique human readable string to each processing unit. This
  339. function copies at most the @var{maxlen} first bytes of the unique string
  340. associated to a worker identified by its identifier @var{id} into the
  341. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  342. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  343. function on an invalid identifier results in an unspecified behaviour.
  344. @end deftypefun
  345. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  346. This function returns the identifier of the memory node associated to the
  347. worker identified by @var{workerid}.
  348. @end deftypefun
  349. @deftp {Data Type} {enum starpu_node_kind}
  350. todo
  351. @table @asis
  352. @item @code{STARPU_UNUSED}
  353. @item @code{STARPU_CPU_RAM}
  354. @item @code{STARPU_CUDA_RAM}
  355. @item @code{STARPU_OPENCL_RAM}
  356. @end table
  357. @end deftp
  358. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  359. Returns the type of the given node as defined by @code{enum
  360. starpu_node_kind}. For example, when defining a new data interface,
  361. this function should be used in the allocation function to determine
  362. on which device the memory needs to be allocated.
  363. @end deftypefun
  364. @node Data Management
  365. @section Data Management
  366. @menu
  367. * Introduction to Data Management::
  368. * Basic Data Management API::
  369. * Access registered data from the application::
  370. @end menu
  371. This section describes the data management facilities provided by StarPU.
  372. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  373. design their own data interfaces if required.
  374. @node Introduction to Data Management
  375. @subsection Introduction
  376. Data management is done at a high-level in StarPU: rather than accessing a mere
  377. list of contiguous buffers, the tasks may manipulate data that are described by
  378. a high-level construct which we call data interface.
  379. An example of data interface is the "vector" interface which describes a
  380. contiguous data array on a spefic memory node. This interface is a simple
  381. structure containing the number of elements in the array, the size of the
  382. elements, and the address of the array in the appropriate address space (this
  383. address may be invalid if there is no valid copy of the array in the memory
  384. node). More informations on the data interfaces provided by StarPU are
  385. given in @ref{Data Interfaces}.
  386. When a piece of data managed by StarPU is used by a task, the task
  387. implementation is given a pointer to an interface describing a valid copy of
  388. the data that is accessible from the current processing unit.
  389. Every worker is associated to a memory node which is a logical abstraction of
  390. the address space from which the processing unit gets its data. For instance,
  391. the memory node associated to the different CPU workers represents main memory
  392. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  393. Every memory node is identified by a logical index which is accessible from the
  394. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  395. to StarPU, the specified memory node indicates where the piece of data
  396. initially resides (we also call this memory node the home node of a piece of
  397. data).
  398. @node Basic Data Management API
  399. @subsection Basic Data Management API
  400. @deftp {Data Type} {enum starpu_access_mode}
  401. This datatype describes a data access mode. The different available modes are:
  402. @table @asis
  403. @item @code{STARPU_R}: read-only mode.
  404. @item @code{STARPU_W}: write-only mode.
  405. @item @code{STARPU_RW}: read-write mode.
  406. This is equivalent to @code{STARPU_R|STARPU_W}.
  407. @item @code{STARPU_SCRATCH}: scratch memory.
  408. A temporary buffer is allocated for the task, but StarPU does not
  409. enforce data consistency---i.e. each device has its own buffer,
  410. independently from each other (even for CPUs), and no data transfer is
  411. ever performed. This is useful for temporary variables to avoid
  412. allocating/freeing buffers inside each task.
  413. Currently, no behavior is defined concerning the relation with the
  414. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  415. registration---i.e., the value of the scratch buffer is undefined at
  416. entry of the codelet function. It is being considered for future
  417. extensions at least to define the initial value. For now, data to be
  418. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  419. a @code{NULL} pointer, since the value of the provided buffer is simply
  420. ignored for now.
  421. @item @code{STARPU_REDUX}: reduction mode. TODO!
  422. @end table
  423. @end deftp
  424. @deftp {Data Type} {starpu_data_handle_t}
  425. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  426. data. Once a piece of data has been registered to StarPU, it is associated to a
  427. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  428. over the entire machine, so that we can maintain data consistency and locate
  429. data replicates for instance.
  430. @end deftp
  431. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  432. Register a piece of data into the handle located at the @var{handleptr}
  433. address. The @var{data_interface} buffer contains the initial description of the
  434. data in the home node. The @var{ops} argument is a pointer to a structure
  435. describing the different methods used to manipulate this type of interface. See
  436. @ref{struct starpu_data_interface_ops} for more details on this structure.
  437. If @code{home_node} is -1, StarPU will automatically
  438. allocate the memory when it is used for the
  439. first time in write-only mode. Once such data handle has been automatically
  440. allocated, it is possible to access it using any access mode.
  441. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  442. matrix) which can be registered by the means of helper functions (e.g.
  443. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  444. @end deftypefun
  445. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  446. Register a new piece of data into the handle @var{handledst} with the
  447. same interface as the handle @var{handlesrc}.
  448. @end deftypefun
  449. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  450. This function unregisters a data handle from StarPU. If the data was
  451. automatically allocated by StarPU because the home node was -1, all
  452. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  453. is put back into the home node in the buffer that was initially registered.
  454. Using a data handle that has been unregistered from StarPU results in an
  455. undefined behaviour.
  456. @end deftypefun
  457. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  458. This is the same as starpu_data_unregister, except that StarPU does not put back
  459. a valid copy into the home node, in the buffer that was initially registered.
  460. @end deftypefun
  461. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  462. Destroy the data handle once it is not needed anymore by any submitted
  463. task. No coherency is assumed.
  464. @end deftypefun
  465. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  466. Destroy all replicates of the data handle immediately. After data invalidation,
  467. the first access to the handle must be performed in write-only mode.
  468. Accessing an invalidated data in read-mode results in undefined
  469. behaviour.
  470. @end deftypefun
  471. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  472. Submits invalidation of the data handle after completion of previously submitted tasks.
  473. @end deftypefun
  474. @c TODO create a specific sections about user interaction with the DSM ?
  475. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  476. This function sets the write-through mask of a given data, i.e. a bitmask of
  477. nodes where the data should be always replicated after modification. It also
  478. prevents the data from being evicted from these nodes when memory gets scarse.
  479. @end deftypefun
  480. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  481. Issue a prefetch request for a given data to a given node, i.e.
  482. requests that the data be replicated to the given node, so that it is available
  483. there for tasks. If the @var{async} parameter is 0, the call will block until
  484. the transfer is achieved, else the call will return as soon as the request is
  485. scheduled (which may however have to wait for a task completion).
  486. @end deftypefun
  487. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  488. Return the handle corresponding to the data pointed to by the @var{ptr}
  489. host pointer.
  490. @end deftypefun
  491. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  492. Explicitly ask StarPU to allocate room for a piece of data on the specified
  493. memory node.
  494. @end deftypefun
  495. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  496. Query the status of the handle on the specified memory node.
  497. @end deftypefun
  498. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  499. This function allows to specify that a piece of data can be discarded
  500. without impacting the application.
  501. @end deftypefun
  502. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  503. This sets the codelets to be used for the @var{handle} when it is accessed in
  504. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  505. codelet, and reduction between per-worker buffers will be done with the
  506. @var{redux_cl} codelet.
  507. @end deftypefun
  508. @deftypefun struct starpu_data_interface_ops* starpu_data_get_interface_ops (starpu_data_handle_t @var{handle})
  509. Get a pointer to the structure describing the different methods used
  510. to manipulate the given data. See @ref{struct starpu_data_interface_ops} for more details on this structure.
  511. @end deftypefun
  512. @deftypefun unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t @var{handle})
  513. Return the sequential consistency flag of the given data.
  514. @end deftypefun
  515. @node Access registered data from the application
  516. @subsection Access registered data from the application
  517. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  518. The application must call this function prior to accessing registered data from
  519. main memory outside tasks. StarPU ensures that the application will get an
  520. up-to-date copy of the data in main memory located where the data was
  521. originally registered, and that all concurrent accesses (e.g. from tasks) will
  522. be consistent with the access mode specified in the @var{mode} argument.
  523. @code{starpu_data_release} must be called once the application does not need to
  524. access the piece of data anymore. Note that implicit data
  525. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  526. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  527. the data, unless they have been disabled explictly by calling
  528. @code{starpu_data_set_default_sequential_consistency_flag} or
  529. @code{starpu_data_set_sequential_consistency_flag}.
  530. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  531. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  532. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  533. @end deftypefun
  534. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  535. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  536. @code{starpu_data_acquire}. When the data specified in the first argument is
  537. available in the appropriate access mode, the callback function is executed.
  538. The application may access the requested data during the execution of this
  539. callback. The callback function must call @code{starpu_data_release} once the
  540. application does not need to access the piece of data anymore.
  541. Note that implicit data dependencies are also enforced by
  542. @code{starpu_data_acquire_cb} in case they are not disabled.
  543. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  544. be called from task callbacks. Upon successful completion, this function
  545. returns 0.
  546. @end deftypefun
  547. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  548. This is the same as @code{starpu_data_acquire}, except that the data will be
  549. available on the given memory node instead of main memory.
  550. @end deftypefun
  551. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  552. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  553. available on the given memory node instead of main memory.
  554. @end deftypefun
  555. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  556. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  557. except that the code to be executed in a callback is directly provided as a
  558. macro parameter, and the data handle is automatically released after it. This
  559. permits to easily execute code which depends on the value of some registered
  560. data. This is non-blocking too and may be called from task callbacks.
  561. @end defmac
  562. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  563. This function releases the piece of data acquired by the application either by
  564. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  565. @end deftypefun
  566. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  567. This is the same as @code{starpu_data_release}, except that the data will be
  568. available on the given memory node instead of main memory.
  569. @end deftypefun
  570. @node Data Interfaces
  571. @section Data Interfaces
  572. @menu
  573. * Registering Data::
  574. * Accessing Data Interfaces::
  575. * Defining Interface::
  576. @end menu
  577. @node Registering Data
  578. @subsection Registering Data
  579. There are several ways to register a memory region so that it can be managed by
  580. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  581. matrices as well as BCSR and CSR sparse matrices.
  582. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  583. Register a void interface. There is no data really associated to that
  584. interface, but it may be used as a synchronization mechanism. It also
  585. permits to express an abstract piece of data that is managed by the
  586. application internally: this makes it possible to forbid the
  587. concurrent execution of different tasks accessing the same "void" data
  588. in read-write concurrently.
  589. @end deftypefun
  590. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  591. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  592. typically a scalar, and initialize @var{handle} to represent this data
  593. item.
  594. @cartouche
  595. @smallexample
  596. float var;
  597. starpu_data_handle_t var_handle;
  598. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  599. @end smallexample
  600. @end cartouche
  601. @end deftypefun
  602. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  603. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  604. @var{ptr} and initialize @var{handle} to represent it.
  605. @cartouche
  606. @smallexample
  607. float vector[NX];
  608. starpu_data_handle_t vector_handle;
  609. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  610. sizeof(vector[0]));
  611. @end smallexample
  612. @end cartouche
  613. @end deftypefun
  614. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  615. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  616. pointed by @var{ptr} and initialize @var{handle} to represent it.
  617. @var{ld} specifies the number of elements between rows.
  618. a value greater than @var{nx} adds padding, which can be useful for
  619. alignment purposes.
  620. @cartouche
  621. @smallexample
  622. float *matrix;
  623. starpu_data_handle_t matrix_handle;
  624. matrix = (float*)malloc(width * height * sizeof(float));
  625. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  626. width, width, height, sizeof(float));
  627. @end smallexample
  628. @end cartouche
  629. @end deftypefun
  630. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  631. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  632. elements pointed by @var{ptr} and initialize @var{handle} to represent
  633. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  634. between rows and between z planes.
  635. @cartouche
  636. @smallexample
  637. float *block;
  638. starpu_data_handle_t block_handle;
  639. block = (float*)malloc(nx*ny*nz*sizeof(float));
  640. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  641. nx, nx*ny, nx, ny, nz, sizeof(float));
  642. @end smallexample
  643. @end cartouche
  644. @end deftypefun
  645. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  646. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  647. Compressed Sparse Row Representation) sparse matrix interface.
  648. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  649. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  650. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  651. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  652. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  653. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  654. or 1).
  655. @end deftypefun
  656. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  657. This variant of @code{starpu_data_register} uses the CSR (Compressed
  658. Sparse Row Representation) sparse matrix interface.
  659. TODO
  660. @end deftypefun
  661. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  662. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  663. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  664. elements of size @var{elemsize}. Initialize @var{handleptr}.
  665. @end deftypefun
  666. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  667. Return the interface associated with @var{handle} on @var{memory_node}.
  668. @end deftypefun
  669. @node Accessing Data Interfaces
  670. @subsection Accessing Data Interfaces
  671. Each data interface is provided with a set of field access functions.
  672. The ones using a @code{void *} parameter aimed to be used in codelet
  673. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  674. @deftp {Data Type} {enum starpu_data_interface_id}
  675. The different values are:
  676. @table @asis
  677. @item @code{STARPU_MATRIX_INTERFACE_ID}
  678. @item @code{STARPU_BLOCK_INTERFACE_ID}
  679. @item @code{STARPU_VECTOR_INTERFACE_ID}
  680. @item @code{STARPU_CSR_INTERFACE_ID}
  681. @item @code{STARPU_BCSR_INTERFACE_ID}
  682. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  683. @item @code{STARPU_VOID_INTERFACE_ID}
  684. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  685. @item @code{STARPU_COO_INTERCACE_ID}
  686. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  687. @end table
  688. @end deftp
  689. @menu
  690. * Accessing Handle::
  691. * Accessing Variable Data Interfaces::
  692. * Accessing Vector Data Interfaces::
  693. * Accessing Matrix Data Interfaces::
  694. * Accessing Block Data Interfaces::
  695. * Accessing BCSR Data Interfaces::
  696. * Accessing CSR Data Interfaces::
  697. * Accessing COO Data Interfaces::
  698. @end menu
  699. @node Accessing Handle
  700. @subsubsection Handle
  701. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  702. Return the pointer associated with @var{handle} on node @var{node} or
  703. @code{NULL} if @var{handle}'s interface does not support this
  704. operation or data for this handle is not allocated on that node.
  705. @end deftypefun
  706. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  707. Return the local pointer associated with @var{handle} or @code{NULL}
  708. if @var{handle}'s interface does not have data allocated locally
  709. @end deftypefun
  710. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  711. Return the unique identifier of the interface associated with the given @var{handle}.
  712. @end deftypefun
  713. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  714. Return the size of the data associated with @var{handle}
  715. @end deftypefun
  716. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {starpu_ssize_t *}@var{count})
  717. Execute the packing operation of the interface of the data registered
  718. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  719. packing operation must allocate a buffer large enough at @var{ptr} and
  720. copy into the newly allocated buffer the data associated to
  721. @var{handle}. @var{count} will be set to the size of the allocated
  722. buffer.
  723. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  724. buffer but just set @var{count} to the size of the buffer which
  725. would have been allocated. The special value @code{-1} indicates the
  726. size is yet unknown.
  727. @end deftypefun
  728. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  729. Unpack in @var{handle} the data located at @var{ptr} of size
  730. @var{count} as described by the interface of the data. The interface
  731. registered at @var{handle} must define a unpacking operation
  732. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  733. is freed after calling the data unpacking operation.
  734. @end deftypefun
  735. @node Accessing Variable Data Interfaces
  736. @subsubsection Variable Data Interfaces
  737. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  738. Return the size of the variable designated by @var{handle}.
  739. @end deftypefun
  740. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  741. Return a pointer to the variable designated by @var{handle}.
  742. @end deftypefun
  743. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  744. Return a pointer to the variable designated by @var{interface}.
  745. @end defmac
  746. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  747. Return the size of the variable designated by @var{interface}.
  748. @end defmac
  749. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  750. Return a device handle for the variable designated by @var{interface}, to be
  751. used on OpenCL. The offset documented below has to be used in addition to this.
  752. @end defmac
  753. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  754. Return the offset in the variable designated by @var{interface}, to be used
  755. with the device handle.
  756. @end defmac
  757. @node Accessing Vector Data Interfaces
  758. @subsubsection Vector Data Interfaces
  759. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  760. Return the number of elements registered into the array designated by @var{handle}.
  761. @end deftypefun
  762. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  763. Return the size of each element of the array designated by @var{handle}.
  764. @end deftypefun
  765. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  766. Return the local pointer associated with @var{handle}.
  767. @end deftypefun
  768. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  769. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  770. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  771. @end defmac
  772. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  773. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  774. documented below has to be used in addition to this.
  775. @end defmac
  776. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  777. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  778. @end defmac
  779. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  780. Return the number of elements registered into the array designated by @var{interface}.
  781. @end defmac
  782. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  783. Return the size of each element of the array designated by @var{interface}.
  784. @end defmac
  785. @node Accessing Matrix Data Interfaces
  786. @subsubsection Matrix Data Interfaces
  787. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  788. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  789. @end deftypefun
  790. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  791. Return the number of elements on the y-axis of the matrix designated by
  792. @var{handle}.
  793. @end deftypefun
  794. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  795. Return the number of elements between each row of the matrix designated by
  796. @var{handle}. Maybe be equal to nx when there is no padding.
  797. @end deftypefun
  798. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  799. Return the local pointer associated with @var{handle}.
  800. @end deftypefun
  801. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  802. Return the size of the elements registered into the matrix designated by
  803. @var{handle}.
  804. @end deftypefun
  805. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  806. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  807. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  808. used instead.
  809. @end defmac
  810. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  811. Return a device handle for the matrix designated by @var{interface}, to be used
  812. on OpenCL. The offset documented below has to be used in addition to this.
  813. @end defmac
  814. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  815. Return the offset in the matrix designated by @var{interface}, to be used with
  816. the device handle.
  817. @end defmac
  818. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  819. Return the number of elements on the x-axis of the matrix designated by
  820. @var{interface}.
  821. @end defmac
  822. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  823. Return the number of elements on the y-axis of the matrix designated by
  824. @var{interface}.
  825. @end defmac
  826. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  827. Return the number of elements between each row of the matrix designated by
  828. @var{interface}. May be equal to nx when there is no padding.
  829. @end defmac
  830. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  831. Return the size of the elements registered into the matrix designated by
  832. @var{interface}.
  833. @end defmac
  834. @node Accessing Block Data Interfaces
  835. @subsubsection Block Data Interfaces
  836. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  837. Return the number of elements on the x-axis of the block designated by @var{handle}.
  838. @end deftypefun
  839. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  840. Return the number of elements on the y-axis of the block designated by @var{handle}.
  841. @end deftypefun
  842. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  843. Return the number of elements on the z-axis of the block designated by @var{handle}.
  844. @end deftypefun
  845. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  846. Return the number of elements between each row of the block designated by
  847. @var{handle}, in the format of the current memory node.
  848. @end deftypefun
  849. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  850. Return the number of elements between each z plane of the block designated by
  851. @var{handle}, in the format of the current memory node.
  852. @end deftypefun
  853. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  854. Return the local pointer associated with @var{handle}.
  855. @end deftypefun
  856. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  857. Return the size of the elements of the block designated by @var{handle}.
  858. @end deftypefun
  859. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  860. Return a pointer to the block designated by @var{interface}.
  861. @end defmac
  862. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  863. Return a device handle for the block designated by @var{interface}, to be used
  864. on OpenCL. The offset document below has to be used in addition to this.
  865. @end defmac
  866. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  867. Return the offset in the block designated by @var{interface}, to be used with
  868. the device handle.
  869. @end defmac
  870. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  871. Return the number of elements on the x-axis of the block designated by @var{handle}.
  872. @end defmac
  873. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  874. Return the number of elements on the y-axis of the block designated by @var{handle}.
  875. @end defmac
  876. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  877. Return the number of elements on the z-axis of the block designated by @var{handle}.
  878. @end defmac
  879. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  880. Return the number of elements between each row of the block designated by
  881. @var{interface}. May be equal to nx when there is no padding.
  882. @end defmac
  883. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  884. Return the number of elements between each z plane of the block designated by
  885. @var{interface}. May be equal to nx*ny when there is no padding.
  886. @end defmac
  887. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  888. Return the size of the elements of the matrix designated by @var{interface}.
  889. @end defmac
  890. @node Accessing BCSR Data Interfaces
  891. @subsubsection BCSR Data Interfaces
  892. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  893. Return the number of non-zero elements in the matrix designated by @var{handle}.
  894. @end deftypefun
  895. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  896. Return the number of rows (in terms of blocks of size r*c) in the matrix
  897. designated by @var{handle}.
  898. @end deftypefun
  899. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  900. Return the index at which all arrays (the column indexes, the row pointers...)
  901. of the matrix desginated by @var{handle} start.
  902. @end deftypefun
  903. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  904. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  905. @end deftypefun
  906. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  907. Return a pointer to the column index, which holds the positions of the non-zero
  908. entries in the matrix designated by @var{handle}.
  909. @end deftypefun
  910. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  911. Return the row pointer array of the matrix designated by @var{handle}.
  912. @end deftypefun
  913. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  914. Return the number of rows in a block.
  915. @end deftypefun
  916. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  917. Return the numberof columns in a block.
  918. @end deftypefun
  919. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  920. Return the size of the elements in the matrix designated by @var{handle}.
  921. @end deftypefun
  922. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  923. Return the number of non-zero values in the matrix designated by @var{interface}.
  924. @end defmac
  925. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  926. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  927. @end defmac
  928. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  929. Return a device handle for the array of non-zero values in the matrix designated
  930. by @var{interface}. The offset documented below has to be used in addition to
  931. this.
  932. @end defmac
  933. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  934. Return a pointer to the column index of the matrix designated by @var{interface}.
  935. @end defmac
  936. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  937. Return a device handle for the column index of the matrix designated by
  938. @var{interface}. The offset documented below has to be used in addition to
  939. this.
  940. @end defmac
  941. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  942. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  943. @end defmac
  944. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  945. Return a device handle for the row pointer array of the matrix designated by
  946. @var{interface}. The offset documented below has to be used in addition to
  947. this.
  948. @end defmac
  949. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  950. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  951. designated by @var{interface}, to be used with the device handles.
  952. @end defmac
  953. @node Accessing CSR Data Interfaces
  954. @subsubsection CSR Data Interfaces
  955. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  956. Return the number of non-zero values in the matrix designated by @var{handle}.
  957. @end deftypefun
  958. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  959. Return the size of the row pointer array of the matrix designated by @var{handle}.
  960. @end deftypefun
  961. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  962. Return the index at which all arrays (the column indexes, the row pointers...)
  963. of the matrix designated by @var{handle} start.
  964. @end deftypefun
  965. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  966. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  967. @end deftypefun
  968. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  969. Return a local pointer to the column index of the matrix designated by @var{handle}.
  970. @end deftypefun
  971. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  972. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  973. @end deftypefun
  974. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  975. Return the size of the elements registered into the matrix designated by @var{handle}.
  976. @end deftypefun
  977. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  978. Return the number of non-zero values in the matrix designated by @var{interface}.
  979. @end defmac
  980. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  981. Return the size of the row pointer array of the matrix designated by @var{interface}.
  982. @end defmac
  983. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  984. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  985. @end defmac
  986. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  987. Return a device handle for the array of non-zero values in the matrix designated
  988. by @var{interface}. The offset documented below has to be used in addition to
  989. this.
  990. @end defmac
  991. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  992. Return a pointer to the column index of the matrix designated by @var{interface}.
  993. @end defmac
  994. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  995. Return a device handle for the column index of the matrix designated by
  996. @var{interface}. The offset documented below has to be used in addition to
  997. this.
  998. @end defmac
  999. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  1000. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  1001. @end defmac
  1002. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  1003. Return a device handle for the row pointer array of the matrix designated by
  1004. @var{interface}. The offset documented below has to be used in addition to
  1005. this.
  1006. @end defmac
  1007. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  1008. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  1009. designated by @var{interface}, to be used with the device handles.
  1010. @end defmac
  1011. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  1012. Return the index at which all arrays (the column indexes, the row pointers...)
  1013. of the @var{interface} start.
  1014. @end defmac
  1015. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  1016. Return the size of the elements registered into the matrix designated by @var{interface}.
  1017. @end defmac
  1018. @node Accessing COO Data Interfaces
  1019. @subsubsection COO Data Interfaces
  1020. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  1021. Return a pointer to the column array of the matrix designated by
  1022. @var{interface}.
  1023. @end defmac
  1024. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  1025. Return a device handle for the column array of the matrix designated by
  1026. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1027. used in addition to this.
  1028. @end defmac
  1029. @defmac STARPU_COO_GET_ROWS (interface)
  1030. Return a pointer to the rows array of the matrix designated by @var{interface}.
  1031. @end defmac
  1032. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  1033. Return a device handle for the row array of the matrix designated by
  1034. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1035. used in addition to this.
  1036. @end defmac
  1037. @defmac STARPU_COO_GET_VALUES (interface)
  1038. Return a pointer to the values array of the matrix designated by
  1039. @var{interface}.
  1040. @end defmac
  1041. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  1042. Return a device handle for the value array of the matrix designated by
  1043. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1044. used in addition to this.
  1045. @end defmac
  1046. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  1047. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  1048. @end defmac
  1049. @defmac STARPU_COO_GET_NX (interface)
  1050. Return the number of elements on the x-axis of the matrix designated by
  1051. @var{interface}.
  1052. @end defmac
  1053. @defmac STARPU_COO_GET_NY (interface)
  1054. Return the number of elements on the y-axis of the matrix designated by
  1055. @var{interface}.
  1056. @end defmac
  1057. @defmac STARPU_COO_GET_NVALUES (interface)
  1058. Return the number of values registered in the matrix designated by
  1059. @var{interface}.
  1060. @end defmac
  1061. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1062. Return the size of the elements registered into the matrix designated by
  1063. @var{interface}.
  1064. @end defmac
  1065. @node Defining Interface
  1066. @subsection Defining Interface
  1067. Applications can provide their own interface as shown in
  1068. @pxref{Defining a New Data Interface}.
  1069. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1070. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1071. failed, the allocation method should then return -ENOMEM as allocated size.
  1072. @end deftypefun
  1073. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1074. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1075. @end deftypefun
  1076. @deftp {Data Type} {struct starpu_data_interface_ops}
  1077. @anchor{struct starpu_data_interface_ops}
  1078. Per-interface data transfer methods.
  1079. @table @asis
  1080. @item @code{void (*register_data_handle)(starpu_data_handle_t handle, unsigned home_node, void *data_interface)}
  1081. Register an existing interface into a data handle.
  1082. @item @code{starpu_ssize_t (*allocate_data_on_node)(void *data_interface, unsigned node)}
  1083. Allocate data for the interface on a given node.
  1084. @item @code{ void (*free_data_on_node)(void *data_interface, unsigned node)}
  1085. Free data of the interface on a given node.
  1086. @item @code{ const struct starpu_data_copy_methods *copy_methods}
  1087. ram/cuda/opencl synchronous and asynchronous transfer methods.
  1088. @item @code{ void * (*handle_to_pointer)(starpu_data_handle_t handle, unsigned node)}
  1089. Return the current pointer (if any) for the handle on the given node.
  1090. @item @code{ size_t (*get_size)(starpu_data_handle_t handle)}
  1091. Return an estimation of the size of data, for performance models.
  1092. @item @code{ uint32_t (*footprint)(starpu_data_handle_t handle)}
  1093. Return a 32bit footprint which characterizes the data size.
  1094. @item @code{ int (*compare)(void *data_interface_a, void *data_interface_b)}
  1095. Compare the data size of two interfaces.
  1096. @item @code{ void (*display)(starpu_data_handle_t handle, FILE *f)}
  1097. Dump the sizes of a handle to a file.
  1098. @item @code{enum starpu_data_interface_id interfaceid}
  1099. An identifier that is unique to each interface.
  1100. @item @code{size_t interface_size}
  1101. The size of the interface data descriptor.
  1102. @item @code{int is_multiformat}
  1103. todo
  1104. @item @code{struct starpu_multiformat_data_interface_ops* (*get_mf_ops)(void *data_interface)}
  1105. todo
  1106. @item @code{int (*pack_data)(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)}
  1107. Pack the data handle into a contiguous buffer at the address
  1108. @code{ptr} and set the size of the newly created buffer in
  1109. @code{count}. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  1110. buffer but just set @var{count} to the size of the buffer which
  1111. would have been allocated. The special value @code{-1} indicates the
  1112. size is yet unknown.
  1113. @item @code{int (*unpack_data)(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)}
  1114. Unpack the data handle from the contiguous buffer at the address @code{ptr} of size @var{count}
  1115. @end table
  1116. @end deftp
  1117. @deftp {Data Type} {struct starpu_data_copy_methods}
  1118. Defines the per-interface methods. If the @code{any_to_any} method is provided,
  1119. it will be used by default if no more specific method is provided. It can still
  1120. be useful to provide more specific method in case of e.g. available particular
  1121. CUDA or OpenCL support.
  1122. @table @asis
  1123. @item @code{int (*@{ram,cuda,opencl@}_to_@{ram,cuda,opencl@})(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1124. These 12 functions define how to copy data from the @var{src_interface}
  1125. interface on the @var{src_node} node to the @var{dst_interface} interface
  1126. on the @var{dst_node} node. They return 0 on success.
  1127. @item @code{int (*@{ram,cuda@}_to_@{ram,cuda@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  1128. These 3 functions (@code{ram_to_ram} is not among these) define how to copy
  1129. data from the @var{src_interface} interface on the @var{src_node} node to the
  1130. @var{dst_interface} interface on the @var{dst_node} node, using the given
  1131. @var{stream}. Must return 0 if the transfer was actually completed completely
  1132. synchronously, or -EAGAIN if at least some transfers are still ongoing and
  1133. should be awaited for by the core.
  1134. @item @code{int (*@{ram,opencl@}_to_@{ram,opencl@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  1135. These 3 functions (@code{ram_to_ram} is not among them) define how to copy
  1136. data from the @var{src_interface} interface on the @var{src_node} node to the
  1137. @var{dst_interface} interface on the @var{dst_node} node, by recording in
  1138. @var{event}, a pointer to a cl_event, the event of the last submitted transfer.
  1139. Must return 0 if the transfer was actually completed completely synchronously,
  1140. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1141. for by the core.
  1142. @item @code{int (*any_to_any)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, void *async_data)}
  1143. Define how to copy data from the @var{src_interface} interface on the
  1144. @var{src_node} node to the @var{dst_interface} interface on the @var{dst_node}
  1145. node. This is meant to be implemented through the @var{starpu_interface_copy}
  1146. helper, to which @var{async_data} should be passed as such, and will be used to
  1147. manage asynchronicity. This must return -EAGAIN if any of the
  1148. @var{starpu_interface_copy} calls has returned -EAGAIN (i.e. at least some
  1149. transfer is still ongoing), and return 0 otherwise.
  1150. @end table
  1151. @end deftp
  1152. @deftypefun int starpu_interface_copy (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {void *}@var{async_data})
  1153. Copy @var{size} bytes from byte offset @var{src_offset} of @var{src} on
  1154. @var{src_node} to byte offset @var{dst_offset} of @var{dst} on @var{dst_node}.
  1155. This is to be used in the @var{any_to_any} copy method, which is provided with
  1156. the @var{async_data} to be pased to @var{starpu_interface_copy}. this returns
  1157. -EAGAIN if the transfer is still ongoing, or 0 if the transfer is already
  1158. completed.
  1159. @end deftypefun
  1160. @deftypefun uint32_t starpu_crc32_be_n ({void *}@var{input}, size_t @var{n}, uint32_t @var{inputcrc})
  1161. Compute the CRC of a byte buffer seeded by the inputcrc "current
  1162. state". The return value should be considered as the new "current
  1163. state" for future CRC computation. This is used for computing data size
  1164. footprint.
  1165. @end deftypefun
  1166. @deftypefun uint32_t starpu_crc32_be (uint32_t @var{input}, uint32_t @var{inputcrc})
  1167. Compute the CRC of a 32bit number seeded by the inputcrc "current
  1168. state". The return value should be considered as the new "current
  1169. state" for future CRC computation. This is used for computing data size
  1170. footprint.
  1171. @end deftypefun
  1172. @deftypefun uint32_t starpu_crc32_string ({char *}@var{str}, uint32_t @var{inputcrc})
  1173. Compute the CRC of a string seeded by the inputcrc "current state".
  1174. The return value should be considered as the new "current state" for
  1175. future CRC computation. This is used for computing data size footprint.
  1176. @end deftypefun
  1177. @deftypefun int starpu_data_interface_get_next_id (void)
  1178. Returns the next available id for a newly created data interface
  1179. (@pxref{Defining a New Data Interface}).
  1180. @end deftypefun
  1181. @node Data Partition
  1182. @section Data Partition
  1183. @menu
  1184. * Basic API::
  1185. * Predefined filter functions::
  1186. @end menu
  1187. @node Basic API
  1188. @subsection Basic API
  1189. @deftp {Data Type} {struct starpu_data_filter}
  1190. The filter structure describes a data partitioning operation, to be given to the
  1191. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1192. for an example. The different fields are:
  1193. @table @asis
  1194. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1195. This function fills the @code{child_interface} structure with interface
  1196. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1197. @item @code{unsigned nchildren}
  1198. This is the number of parts to partition the data into.
  1199. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1200. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1201. children depends on the actual data (e.g. the number of blocks in a sparse
  1202. matrix).
  1203. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1204. In case the resulting children use a different data interface, this function
  1205. returns which interface is used by child number @code{id}.
  1206. @item @code{unsigned filter_arg}
  1207. Allow to define an additional parameter for the filter function.
  1208. @item @code{void *filter_arg_ptr}
  1209. Allow to define an additional pointer parameter for the filter
  1210. function, such as the sizes of the different parts.
  1211. @end table
  1212. @end deftp
  1213. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1214. @anchor{starpu_data_partition}
  1215. This requests partitioning one StarPU data @var{initial_handle} into several
  1216. subdata according to the filter @var{f}, as shown in the following example:
  1217. @cartouche
  1218. @smallexample
  1219. struct starpu_data_filter f = @{
  1220. .filter_func = starpu_matrix_filter_block,
  1221. .nchildren = nslicesx,
  1222. .get_nchildren = NULL,
  1223. .get_child_ops = NULL
  1224. @};
  1225. starpu_data_partition(A_handle, &f);
  1226. @end smallexample
  1227. @end cartouche
  1228. @end deftypefun
  1229. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1230. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1231. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1232. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1233. @cartouche
  1234. @smallexample
  1235. starpu_data_unpartition(A_handle, 0);
  1236. @end smallexample
  1237. @end cartouche
  1238. @end deftypefun
  1239. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1240. This function returns the number of children.
  1241. @end deftypefun
  1242. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1243. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1244. @end deftypefun
  1245. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1246. After partitioning a StarPU data by applying a filter,
  1247. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1248. the data portions. @var{root_data} is the parent data that was
  1249. partitioned. @var{depth} is the number of filters to traverse (in
  1250. case several filters have been applied, to e.g. partition in row
  1251. blocks, and then in column blocks), and the subsequent
  1252. parameters are the indexes. The function returns a handle to the
  1253. subdata.
  1254. @cartouche
  1255. @smallexample
  1256. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1257. @end smallexample
  1258. @end cartouche
  1259. @end deftypefun
  1260. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1261. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1262. va_list for the parameter list.
  1263. @end deftypefun
  1264. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1265. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1266. recursively. @var{nfilters} pointers to variables of the type
  1267. starpu_data_filter should be given.
  1268. @end deftypefun
  1269. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1270. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1271. recursively. It uses a va_list of pointers to variables of the typer
  1272. starpu_data_filter.
  1273. @end deftypefun
  1274. @node Predefined filter functions
  1275. @subsection Predefined filter functions
  1276. @menu
  1277. * Partitioning Vector Data::
  1278. * Partitioning Matrix Data::
  1279. * Partitioning 3D Matrix Data::
  1280. * Partitioning BCSR Data::
  1281. @end menu
  1282. This section gives a partial list of the predefined partitioning functions.
  1283. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1284. list can be found in @code{starpu_data_filters.h} .
  1285. @node Partitioning Vector Data
  1286. @subsubsection Partitioning Vector Data
  1287. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1288. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1289. vector represented by @var{father_interface} once partitioned in
  1290. @var{nparts} chunks of equal size.
  1291. @end deftypefun
  1292. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1293. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1294. vector represented by @var{father_interface} once partitioned in
  1295. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1296. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1297. IMPORTANT: This can only be used for read-only access, as no coherency is
  1298. enforced for the shadowed parts.
  1299. A usage example is available in examples/filters/shadow.c
  1300. @end deftypefun
  1301. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1302. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1303. vector represented by @var{father_interface} once partitioned into
  1304. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1305. @code{*@var{f}}.
  1306. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1307. @code{uint32_t} elements, each of which specifies the number of elements
  1308. in each chunk of the partition.
  1309. @end deftypefun
  1310. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1311. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1312. vector represented by @var{father_interface} once partitioned in two
  1313. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1314. @code{0} or @code{1}.
  1315. @end deftypefun
  1316. @node Partitioning Matrix Data
  1317. @subsubsection Partitioning Matrix Data
  1318. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1319. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1320. matrices. If nparts does not divide x, the last submatrix contains the
  1321. remainder.
  1322. @end deftypefun
  1323. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1324. This partitions a dense Matrix along the x dimension, with a shadow border
  1325. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1326. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1327. remainder.
  1328. IMPORTANT: This can only be used for read-only access, as no coherency is
  1329. enforced for the shadowed parts.
  1330. A usage example is available in examples/filters/shadow2d.c
  1331. @end deftypefun
  1332. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1333. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1334. matrices. If nparts does not divide y, the last submatrix contains the
  1335. remainder.
  1336. @end deftypefun
  1337. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1338. This partitions a dense Matrix along the y dimension, with a shadow border
  1339. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1340. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1341. remainder.
  1342. IMPORTANT: This can only be used for read-only access, as no coherency is
  1343. enforced for the shadowed parts.
  1344. A usage example is available in examples/filters/shadow2d.c
  1345. @end deftypefun
  1346. @node Partitioning 3D Matrix Data
  1347. @subsubsection Partitioning 3D Matrix Data
  1348. A usage example is available in examples/filters/shadow3d.c
  1349. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1350. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1351. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1352. remainder.
  1353. @end deftypefun
  1354. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1355. This partitions a 3D matrix along the X dimension, with a shadow border
  1356. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1357. matrices. If nparts does not divide x, the last submatrix contains the
  1358. remainder.
  1359. IMPORTANT: This can only be used for read-only access, as no coherency is
  1360. enforced for the shadowed parts.
  1361. @end deftypefun
  1362. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1363. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1364. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1365. remainder.
  1366. @end deftypefun
  1367. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1368. This partitions a 3D matrix along the Y dimension, with a shadow border
  1369. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1370. matrices. If nparts does not divide y, the last submatrix contains the
  1371. remainder.
  1372. IMPORTANT: This can only be used for read-only access, as no coherency is
  1373. enforced for the shadowed parts.
  1374. @end deftypefun
  1375. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1376. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1377. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1378. remainder.
  1379. @end deftypefun
  1380. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1381. This partitions a 3D matrix along the Z dimension, with a shadow border
  1382. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1383. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1384. remainder.
  1385. IMPORTANT: This can only be used for read-only access, as no coherency is
  1386. enforced for the shadowed parts.
  1387. @end deftypefun
  1388. @node Partitioning BCSR Data
  1389. @subsubsection Partitioning BCSR Data
  1390. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1391. This partitions a block-sparse matrix into dense matrices.
  1392. @end deftypefun
  1393. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1394. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1395. @end deftypefun
  1396. @node Multiformat Data Interface
  1397. @section Multiformat Data Interface
  1398. @deftp {Data Type} {struct starpu_multiformat_data_interface_ops}
  1399. The different fields are:
  1400. @table @asis
  1401. @item @code{size_t cpu_elemsize}
  1402. the size of each element on CPUs,
  1403. @item @code{size_t opencl_elemsize}
  1404. the size of each element on OpenCL devices,
  1405. @item @code{struct starpu_codelet *cpu_to_opencl_cl}
  1406. pointer to a codelet which converts from CPU to OpenCL
  1407. @item @code{struct starpu_codelet *opencl_to_cpu_cl}
  1408. pointer to a codelet which converts from OpenCL to CPU
  1409. @item @code{size_t cuda_elemsize}
  1410. the size of each element on CUDA devices,
  1411. @item @code{struct starpu_codelet *cpu_to_cuda_cl}
  1412. pointer to a codelet which converts from CPU to CUDA
  1413. @item @code{struct starpu_codelet *cuda_to_cpu_cl}
  1414. pointer to a codelet which converts from CUDA to CPU
  1415. @end table
  1416. @end deftp
  1417. @deftypefun void starpu_multiformat_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops})
  1418. Register a piece of data that can be represented in different ways, depending upon
  1419. the processing unit that manipulates it. It allows the programmer, for instance, to
  1420. use an array of structures when working on a CPU, and a structure of arrays when
  1421. working on a GPU.
  1422. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  1423. the format.
  1424. @end deftypefun
  1425. @defmac STARPU_MULTIFORMAT_GET_CPU_PTR ({void *}@var{interface})
  1426. returns the local pointer to the data with CPU format.
  1427. @end defmac
  1428. @defmac STARPU_MULTIFORMAT_GET_CUDA_PTR ({void *}@var{interface})
  1429. returns the local pointer to the data with CUDA format.
  1430. @end defmac
  1431. @defmac STARPU_MULTIFORMAT_GET_OPENCL_PTR ({void *}@var{interface})
  1432. returns the local pointer to the data with OpenCL format.
  1433. @end defmac
  1434. @defmac STARPU_MULTIFORMAT_GET_NX ({void *}@var{interface})
  1435. returns the number of elements in the data.
  1436. @end defmac
  1437. @node Codelets and Tasks
  1438. @section Codelets and Tasks
  1439. This section describes the interface to manipulate codelets and tasks.
  1440. @deftp {Data Type} {enum starpu_codelet_type}
  1441. Describes the type of parallel task. The different values are:
  1442. @table @asis
  1443. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1444. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1445. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1446. @code{starpu_combined_worker_get_rank} to distribute the work
  1447. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1448. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1449. determine how many threads should be started.
  1450. @end table
  1451. See @ref{Parallel Tasks} for details.
  1452. @end deftp
  1453. @defmac STARPU_CPU
  1454. This macro is used when setting the field @code{where} of a @code{struct
  1455. starpu_codelet} to specify the codelet may be executed on a CPU
  1456. processing unit.
  1457. @end defmac
  1458. @defmac STARPU_CUDA
  1459. This macro is used when setting the field @code{where} of a @code{struct
  1460. starpu_codelet} to specify the codelet may be executed on a CUDA
  1461. processing unit.
  1462. @end defmac
  1463. @defmac STARPU_OPENCL
  1464. This macro is used when setting the field @code{where} of a @code{struct
  1465. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1466. processing unit.
  1467. @end defmac
  1468. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1469. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1470. with this macro indicates the codelet will have several
  1471. implementations. The use of this macro is deprecated. One should
  1472. always only define the field @code{cpu_funcs}.
  1473. @end defmac
  1474. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1475. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1476. with this macro indicates the codelet will have several
  1477. implementations. The use of this macro is deprecated. One should
  1478. always only define the field @code{cuda_funcs}.
  1479. @end defmac
  1480. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1481. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1482. with this macro indicates the codelet will have several
  1483. implementations. The use of this macro is deprecated. One should
  1484. always only define the field @code{opencl_funcs}.
  1485. @end defmac
  1486. @deftp {Data Type} {struct starpu_codelet}
  1487. The codelet structure describes a kernel that is possibly implemented on various
  1488. targets. For compatibility, make sure to initialize the whole structure to zero,
  1489. either by using explicit memset, or by letting the compiler implicitly do it in
  1490. e.g. static storage case.
  1491. @table @asis
  1492. @item @code{uint32_t where} (optional)
  1493. Indicates which types of processing units are able to execute the
  1494. codelet. The different values
  1495. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1496. @code{STARPU_OPENCL} can be combined to specify
  1497. on which types of processing units the codelet can be executed.
  1498. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1499. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1500. indicates that it is only available on OpenCL devices. If the field is
  1501. unset, its value will be automatically set based on the availability
  1502. of the @code{XXX_funcs} fields defined below.
  1503. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1504. Defines a function which should return 1 if the worker designated by
  1505. @var{workerid} can execute the @var{nimpl}th implementation of the
  1506. given @var{task}, 0 otherwise.
  1507. @item @code{enum starpu_codelet_type type} (optional)
  1508. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1509. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1510. implementation is also available. See @ref{Parallel Tasks} for details.
  1511. @item @code{int max_parallelism} (optional)
  1512. If a parallel implementation is available, this denotes the maximum combined
  1513. worker size that StarPU will use to execute parallel tasks for this codelet.
  1514. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1515. This field has been made deprecated. One should use instead the
  1516. @code{cpu_funcs} field.
  1517. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1518. Is an array of function pointers to the CPU implementations of the codelet.
  1519. It must be terminated by a NULL value.
  1520. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1521. argument being the array of data managed by the data management library, and
  1522. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1523. field of the @code{starpu_task} structure.
  1524. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1525. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1526. field, it must be non-null otherwise.
  1527. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1528. This field has been made deprecated. One should use instead the
  1529. @code{cuda_funcs} field.
  1530. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1531. Is an array of function pointers to the CUDA implementations of the codelet.
  1532. It must be terminated by a NULL value.
  1533. @emph{The functions must be host-functions written in the CUDA runtime
  1534. API}. Their prototype must
  1535. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1536. If the @code{where} field is set, then the @code{cuda_funcs}
  1537. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1538. field, it must be non-null otherwise.
  1539. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1540. This field has been made deprecated. One should use instead the
  1541. @code{opencl_funcs} field.
  1542. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1543. Is an array of function pointers to the OpenCL implementations of the codelet.
  1544. It must be terminated by a NULL value.
  1545. The functions prototype must be:
  1546. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1547. If the @code{where} field is set, then the @code{opencl_funcs} field
  1548. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1549. field, it must be non-null otherwise.
  1550. @item @code{unsigned nbuffers}
  1551. Specifies the number of arguments taken by the codelet. These arguments are
  1552. managed by the DSM and are accessed from the @code{void *buffers[]}
  1553. array. The constant argument passed with the @code{cl_arg} field of the
  1554. @code{starpu_task} structure is not counted in this number. This value should
  1555. not be above @code{STARPU_NMAXBUFS}.
  1556. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1557. Is an array of @code{enum starpu_access_mode}. It describes the
  1558. required access modes to the data neeeded by the codelet (e.g.
  1559. @code{STARPU_RW}). The number of entries in this array must be
  1560. specified in the @code{nbuffers} field (defined above), and should not
  1561. exceed @code{STARPU_NMAXBUFS}.
  1562. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1563. option when configuring StarPU.
  1564. @item @code{enum starpu_access_mode *dyn_modes}
  1565. Is an array of @code{enum starpu_access_mode}. It describes the
  1566. required access modes to the data neeeded by the codelet (e.g.
  1567. @code{STARPU_RW}). The number of entries in this array must be
  1568. specified in the @code{nbuffers} field (defined above).
  1569. This field should be used for codelets having a number of datas
  1570. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1571. for a Task}).
  1572. When defining a codelet, one should either define this field or the
  1573. field @code{modes} defined above.
  1574. @item @code{struct starpu_perfmodel *model} (optional)
  1575. This is a pointer to the task duration performance model associated to this
  1576. codelet. This optional field is ignored when set to @code{NULL} or
  1577. when its @code{symbol} field is not set.
  1578. @item @code{struct starpu_perfmodel *power_model} (optional)
  1579. This is a pointer to the task power consumption performance model associated
  1580. to this codelet. This optional field is ignored when set to
  1581. @code{NULL} or when its @code{symbol} field is not set.
  1582. In the case of parallel codelets, this has to account for all processing units
  1583. involved in the parallel execution.
  1584. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1585. Statistics collected at runtime: this is filled by StarPU and should not be
  1586. accessed directly, but for example by calling the
  1587. @code{starpu_codelet_display_stats} function (See
  1588. @ref{starpu_codelet_display_stats} for details).
  1589. @item @code{const char *name} (optional)
  1590. Define the name of the codelet. This can be useful for debugging purposes.
  1591. @end table
  1592. @end deftp
  1593. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1594. @anchor{starpu_codelet_init}
  1595. Initialize @var{cl} with default values. Codelets should preferably be
  1596. initialized statically as shown in @ref{Defining a Codelet}. However
  1597. such a initialisation is not always possible, e.g. when using C++.
  1598. @end deftypefun
  1599. @deftp {Data Type} {enum starpu_task_status}
  1600. State of a task, can be either of
  1601. @table @asis
  1602. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1603. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1604. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1605. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1606. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1607. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1608. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1609. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1610. @end table
  1611. @end deftp
  1612. @deftp {Data Type} {struct starpu_buffer_descr}
  1613. This type is used to describe a data handle along with an
  1614. access mode.
  1615. @table @asis
  1616. @item @code{starpu_data_handle_t handle} describes a data,
  1617. @item @code{enum starpu_access_mode mode} describes its access mode
  1618. @end table
  1619. @end deftp
  1620. @deftp {Data Type} {struct starpu_task}
  1621. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1622. processing units managed by StarPU. It instantiates a codelet. It can either be
  1623. allocated dynamically with the @code{starpu_task_create} method, or declared
  1624. statically. In the latter case, the programmer has to zero the
  1625. @code{starpu_task} structure and to fill the different fields properly. The
  1626. indicated default values correspond to the configuration of a task allocated
  1627. with @code{starpu_task_create}.
  1628. @table @asis
  1629. @item @code{struct starpu_codelet *cl}
  1630. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1631. describes where the kernel should be executed, and supplies the appropriate
  1632. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1633. such empty tasks can be useful for synchronization purposes.
  1634. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1635. This field has been made deprecated. One should use instead the
  1636. @code{handles} field to specify the handles to the data accessed by
  1637. the task. The access modes are now defined in the @code{mode} field of
  1638. the @code{struct starpu_codelet cl} field defined above.
  1639. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1640. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1641. to the different pieces of data accessed by the task. The number
  1642. of entries in this array must be specified in the @code{nbuffers} field of the
  1643. @code{struct starpu_codelet} structure, and should not exceed
  1644. @code{STARPU_NMAXBUFS}.
  1645. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1646. option when configuring StarPU.
  1647. @item @code{starpu_data_handle_t *dyn_handles}
  1648. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1649. to the different pieces of data accessed by the task. The number
  1650. of entries in this array must be specified in the @code{nbuffers} field of the
  1651. @code{struct starpu_codelet} structure.
  1652. This field should be used for tasks having a number of datas
  1653. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1654. for a Task}).
  1655. When defining a task, one should either define this field or the
  1656. field @code{handles} defined above.
  1657. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1658. The actual data pointers to the memory node where execution will happen, managed
  1659. by the DSM.
  1660. @item @code{void **dyn_interfaces}
  1661. The actual data pointers to the memory node where execution will happen, managed
  1662. by the DSM. Is used when the field @code{dyn_handles} is defined.
  1663. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1664. This pointer is passed to the codelet through the second argument
  1665. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1666. @item @code{size_t cl_arg_size} (optional)
  1667. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1668. given to the driver function. A buffer of size @code{cl_arg_size}
  1669. needs to be allocated on the driver. This buffer is then filled with
  1670. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1671. this case, the argument given to the codelet is therefore not the
  1672. @code{cl_arg} pointer, but the address of the buffer in local store
  1673. (LS) instead.
  1674. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1675. @code{cl_arg} pointer is given as such.
  1676. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1677. This is a function pointer of prototype @code{void (*f)(void *)} which
  1678. specifies a possible callback. If this pointer is non-null, the callback
  1679. function is executed @emph{on the host} after the execution of the task. Tasks
  1680. which depend on it might already be executing. The callback is passed the
  1681. value contained in the @code{callback_arg} field. No callback is executed if the
  1682. field is set to @code{NULL}.
  1683. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1684. This is the pointer passed to the callback function. This field is ignored if
  1685. the @code{callback_func} is set to @code{NULL}.
  1686. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1687. If set, this flag indicates that the task should be associated with the tag
  1688. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1689. with the task and to express task dependencies easily.
  1690. @item @code{starpu_tag_t tag_id}
  1691. This field contains the tag associated to the task if the @code{use_tag} field
  1692. was set, it is ignored otherwise.
  1693. @item @code{unsigned sequential_consistency}
  1694. If this flag is set (which is the default), sequential consistency is enforced
  1695. for the data parameters of this task for which sequential consistency is
  1696. enabled. Clearing this flag permits to disable sequential consistency for this
  1697. task, even if data have it enabled.
  1698. @item @code{unsigned synchronous}
  1699. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1700. returns only when the task has been executed (or if no worker is able to
  1701. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1702. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1703. This field indicates a level of priority for the task. This is an integer value
  1704. that must be set between the return values of the
  1705. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1706. and that of the @code{starpu_sched_get_max_priority} for the most important
  1707. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1708. are provided for convenience and respectively returns value of
  1709. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1710. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1711. order to allow static task initialization. Scheduling strategies that take
  1712. priorities into account can use this parameter to take better scheduling
  1713. decisions, but the scheduling policy may also ignore it.
  1714. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1715. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1716. task to the worker specified by the @code{workerid} field.
  1717. @item @code{unsigned workerid} (optional)
  1718. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1719. which is the identifier of the worker that should process this task (as
  1720. returned by @code{starpu_worker_get_id}). This field is ignored if
  1721. @code{execute_on_a_specific_worker} field is set to 0.
  1722. @item @code{starpu_task_bundle_t bundle} (optional)
  1723. The bundle that includes this task. If no bundle is used, this should be NULL.
  1724. @item @code{int detach} (optional) (default: @code{1})
  1725. If this flag is set, it is not possible to synchronize with the task
  1726. by the means of @code{starpu_task_wait} later on. Internal data structures
  1727. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1728. flag is not set.
  1729. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1730. If this flag is set, the task structure will automatically be freed, either
  1731. after the execution of the callback if the task is detached, or during
  1732. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1733. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1734. called explicitly. Setting this flag for a statically allocated task structure
  1735. will result in undefined behaviour. The flag is set to 1 when the task is
  1736. created by calling @code{starpu_task_create()}. Note that
  1737. @code{starpu_task_wait_for_all} will not free any task.
  1738. @item @code{int regenerate} (optional)
  1739. If this flag is set, the task will be re-submitted to StarPU once it has been
  1740. executed. This flag must not be set if the destroy flag is set too.
  1741. @item @code{enum starpu_task_status status} (optional)
  1742. Current state of the task.
  1743. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1744. Profiling information for the task.
  1745. @item @code{double predicted} (output field)
  1746. Predicted duration of the task. This field is only set if the scheduling
  1747. strategy used performance models.
  1748. @item @code{double predicted_transfer} (optional)
  1749. Predicted data transfer duration for the task in microseconds. This field is
  1750. only valid if the scheduling strategy uses performance models.
  1751. @item @code{struct starpu_task *prev}
  1752. A pointer to the previous task. This should only be used by StarPU.
  1753. @item @code{struct starpu_task *next}
  1754. A pointer to the next task. This should only be used by StarPU.
  1755. @item @code{unsigned int mf_skip}
  1756. This is only used for tasks that use multiformat handle. This should only be
  1757. used by StarPU.
  1758. @item @code{double flops}
  1759. This can be set to the number of floating points operations that the task
  1760. will have to achieve. This is useful for easily getting GFlops curves from
  1761. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1762. @item @code{void *starpu_private}
  1763. This is private to StarPU, do not modify. If the task is allocated by hand
  1764. (without starpu_task_create), this field should be set to NULL.
  1765. @item @code{int magic}
  1766. This field is set when initializing a task. It prevents a task from being
  1767. submitted if it has not been properly initialized.
  1768. @end table
  1769. @end deftp
  1770. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1771. Initialize @var{task} with default values. This function is implicitly
  1772. called by @code{starpu_task_create}. By default, tasks initialized with
  1773. @code{starpu_task_init} must be deinitialized explicitly with
  1774. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1775. using @code{STARPU_TASK_INITIALIZER} defined below.
  1776. @end deftypefun
  1777. @defmac STARPU_TASK_INITIALIZER
  1778. It is possible to initialize statically allocated tasks with this
  1779. value. This is equivalent to initializing a starpu_task structure with
  1780. the @code{starpu_task_init} function defined above.
  1781. @end defmac
  1782. @defmac STARPU_TASK_GET_HANDLE ({struct starpu_task} *@var{task}, int @var{i})
  1783. Return the i-th data handle of the given task. If the task is defined
  1784. with a static or dynamic number of handles, will either return the
  1785. i-th element of the field @code{handles} or the i-th element of the field
  1786. @code{dyn_handles} (@pxref{Setting the Data Handles for a Task})
  1787. @end defmac
  1788. @defmac STARPU_TASK_SET_HANDLE ({struct starpu_task} *@var{task}, starpu_data_handle_t @var{handle}, int @var{i})
  1789. Set the i-th data handle of the given task with the given dat handle.
  1790. If the task is defined with a static or dynamic number of handles,
  1791. will either set the i-th element of the field @code{handles} or the
  1792. i-th element of the field @code{dyn_handles} (@pxref{Setting the Data
  1793. Handles for a Task})
  1794. @end defmac
  1795. @defmac STARPU_CODELET_GET_MODE ({struct starpu_codelet *}@var{codelet}, int @var{i})
  1796. Return the access mode of the i-th data handle of the given codelet.
  1797. If the codelet is defined with a static or dynamic number of handles,
  1798. will either return the i-th element of the field @code{modes} or the
  1799. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1800. Handles for a Task})
  1801. @end defmac
  1802. @defmac STARPU_CODELET_SET_MODE ({struct starpu_codelet *}@var{codelet}codelet, {enum starpu_access_mode} @var{mode}, int @var{i})
  1803. Set the access mode of the i-th data handle of the given codelet.
  1804. If the codelet is defined with a static or dynamic number of handles,
  1805. will either set the i-th element of the field @code{modes} or the
  1806. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1807. Handles for a Task})
  1808. @end defmac
  1809. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1810. Allocate a task structure and initialize it with default values. Tasks
  1811. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1812. task is terminated. This means that the task pointer can not be used any more
  1813. once the task is submitted, since it can be executed at any time (unless
  1814. dependencies make it wait) and thus freed at any time.
  1815. If the destroy flag is explicitly unset, the resources used
  1816. by the task have to be freed by calling
  1817. @code{starpu_task_destroy}.
  1818. @end deftypefun
  1819. @deftypefun {struct starpu_task *}starpu_task_dup ({struct starpu_task *}@var{task})
  1820. Allocate a task structure which is the exact duplicate of the given task.
  1821. @end deftypefun
  1822. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1823. Release all the structures automatically allocated to execute @var{task}, but
  1824. not the task structure itself and values set by the user remain unchanged.
  1825. It is thus useful for statically allocated tasks for instance.
  1826. It is also useful when the user wants to execute the same operation several
  1827. times with as least overhead as possible.
  1828. It is called automatically by @code{starpu_task_destroy}.
  1829. It has to be called only after explicitly waiting for the task or after
  1830. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1831. still manipulates the task after calling the callback).
  1832. @end deftypefun
  1833. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1834. Free the resource allocated during @code{starpu_task_create} and
  1835. associated with @var{task}. This function is already called automatically
  1836. after the execution of a task when the @code{destroy} flag of the
  1837. @code{starpu_task} structure is set, which is the default for tasks created by
  1838. @code{starpu_task_create}. Calling this function on a statically allocated task
  1839. results in an undefined behaviour.
  1840. @end deftypefun
  1841. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1842. This function blocks until @var{task} has been executed. It is not possible to
  1843. synchronize with a task more than once. It is not possible to wait for
  1844. synchronous or detached tasks.
  1845. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1846. indicates that the specified task was either synchronous or detached.
  1847. @end deftypefun
  1848. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1849. This function submits @var{task} to StarPU. Calling this function does
  1850. not mean that the task will be executed immediately as there can be data or task
  1851. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1852. scheduling this task with respect to such dependencies.
  1853. This function returns immediately if the @code{synchronous} field of the
  1854. @code{starpu_task} structure was set to 0, and block until the termination of
  1855. the task otherwise. It is also possible to synchronize the application with
  1856. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1857. function for instance.
  1858. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1859. means that there is no worker able to process this task (e.g. there is no GPU
  1860. available and this task is only implemented for CUDA devices).
  1861. starpu_task_submit() can be called from anywhere, including codelet
  1862. functions and callbacks, provided that the @code{synchronous} field of the
  1863. @code{starpu_task} structure is left to 0.
  1864. @end deftypefun
  1865. @deftypefun int starpu_task_wait_for_all (void)
  1866. This function blocks until all the tasks that were submitted are terminated. It
  1867. does not destroy these tasks.
  1868. @end deftypefun
  1869. @deftypefun int starpu_task_nready (void)
  1870. @end deftypefun
  1871. @deftypefun int starpu_task_nsubmitted (void)
  1872. Return the number of submitted tasks which have not completed yet.
  1873. @end deftypefun
  1874. @deftypefun int starpu_task_nready (void)
  1875. Return the number of submitted tasks which are ready for execution are already
  1876. executing. It thus does not include tasks waiting for dependencies.
  1877. @end deftypefun
  1878. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1879. This function returns the task currently executed by the worker, or
  1880. NULL if it is called either from a thread that is not a task or simply
  1881. because there is no task being executed at the moment.
  1882. @end deftypefun
  1883. @deftypefun void starpu_codelet_display_stats ({struct starpu_codelet} *@var{cl})
  1884. @anchor{starpu_codelet_display_stats}
  1885. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1886. @end deftypefun
  1887. @deftypefun int starpu_task_wait_for_no_ready (void)
  1888. This function waits until there is no more ready task.
  1889. @end deftypefun
  1890. @deftypefun void starpu_task_set_implementation ({struct starpu_task *}@var{task}, unsigned @var{impl})
  1891. This function should be called by schedulers to specify the codelet
  1892. implementation to be executed when executing the task.
  1893. @end deftypefun
  1894. @deftypefun unsigned starpu_task_get_implementation ({struct starpu_task *}@var{task})
  1895. This function return the codelet implementation to be executed when
  1896. executing the task.
  1897. @end deftypefun
  1898. @c Callbacks: what can we put in callbacks ?
  1899. @node Insert Task
  1900. @section Insert Task
  1901. @deftypefun int starpu_insert_task (struct starpu_codelet *@var{cl}, ...)
  1902. Create and submit a task corresponding to @var{cl} with the following
  1903. arguments. The argument list must be zero-terminated.
  1904. The arguments following the codelets can be of the following types:
  1905. @itemize
  1906. @item
  1907. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1908. @item
  1909. @code{STARPU_DATA_ARRAY} followed by an array of data handles and its number of elements;
  1910. @item
  1911. the specific values @code{STARPU_VALUE}, @code{STARPU_CALLBACK},
  1912. @code{STARPU_CALLBACK_ARG}, @code{STARPU_CALLBACK_WITH_ARG},
  1913. @code{STARPU_PRIORITY}, @code{STARPU_TAG}, @code{STARPU_FLOPS}, @code{STARPU_SCHED_CTX} followed by the appropriated objects
  1914. as defined below.
  1915. @end itemize
  1916. When using @code{STARPU_DATA_ARRAY}, the access mode of the data
  1917. handles is not defined.
  1918. Parameters to be passed to the codelet implementation are defined
  1919. through the type @code{STARPU_VALUE}. The function
  1920. @code{starpu_codelet_unpack_args} must be called within the codelet
  1921. implementation to retrieve them.
  1922. @end deftypefun
  1923. @defmac STARPU_VALUE
  1924. this macro is used when calling @code{starpu_insert_task}, and must be
  1925. followed by a pointer to a constant value and the size of the constant
  1926. @end defmac
  1927. @defmac STARPU_CALLBACK
  1928. this macro is used when calling @code{starpu_insert_task}, and must be
  1929. followed by a pointer to a callback function
  1930. @end defmac
  1931. @defmac STARPU_CALLBACK_ARG
  1932. this macro is used when calling @code{starpu_insert_task}, and must be
  1933. followed by a pointer to be given as an argument to the callback
  1934. function
  1935. @end defmac
  1936. @defmac STARPU_CALLBACK_WITH_ARG
  1937. this macro is used when calling @code{starpu_insert_task}, and must be
  1938. followed by two pointers: one to a callback function, and the other to
  1939. be given as an argument to the callback function; this is equivalent
  1940. to using both @code{STARPU_CALLBACK} and
  1941. @code{STARPU_CALLBACK_WITH_ARG}
  1942. @end defmac
  1943. @defmac STARPU_PRIORITY
  1944. this macro is used when calling @code{starpu_insert_task}, and must be
  1945. followed by a integer defining a priority level
  1946. @end defmac
  1947. @defmac STARPU_TAG
  1948. this macro is used when calling @code{starpu_insert_task}, and must be
  1949. followed by a tag.
  1950. @end defmac
  1951. @defmac STARPU_FLOPS
  1952. this macro is used when calling @code{starpu_insert_task}, and must be followed
  1953. by an amount of floating point operations, as a double. The user may have to
  1954. explicitly cast into double, otherwise parameter passing will not work.
  1955. @end defmac
  1956. @defmac STARPU_SCHED_CTX
  1957. this macro is used when calling @code{starpu_insert_task}, and must be followed
  1958. by the id of the scheduling context to which we want to submit the task.
  1959. @end defmac
  1960. @deftypefun void starpu_codelet_pack_args ({void **}@var{arg_buffer}, {size_t *}@var{arg_buffer_size}, ...)
  1961. Pack arguments of type @code{STARPU_VALUE} into a buffer which can be
  1962. given to a codelet and later unpacked with the function
  1963. @code{starpu_codelet_unpack_args} defined below.
  1964. @end deftypefun
  1965. @deftypefun void starpu_codelet_unpack_args ({void *}@var{cl_arg}, ...)
  1966. Retrieve the arguments of type @code{STARPU_VALUE} associated to a
  1967. task automatically created using the function
  1968. @code{starpu_insert_task} defined above.
  1969. @end deftypefun
  1970. @node Explicit Dependencies
  1971. @section Explicit Dependencies
  1972. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1973. Declare task dependencies between a @var{task} and an array of tasks of length
  1974. @var{ndeps}. This function must be called prior to the submission of the task,
  1975. but it may called after the submission or the execution of the tasks in the
  1976. array, provided the tasks are still valid (ie. they were not automatically
  1977. destroyed). Calling this function on a task that was already submitted or with
  1978. an entry of @var{task_array} that is not a valid task anymore results in an
  1979. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1980. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1981. same task, in this case, the dependencies are added. It is possible to have
  1982. redundancy in the task dependencies.
  1983. @end deftypefun
  1984. @deftp {Data Type} {starpu_tag_t}
  1985. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1986. dependencies between tasks by the means of those tags. To do so, fill the
  1987. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1988. be arbitrary) and set the @code{use_tag} field to 1.
  1989. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1990. not be started until the tasks which holds the declared dependency tags are
  1991. completed.
  1992. @end deftp
  1993. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1994. Specify the dependencies of the task identified by tag @var{id}. The first
  1995. argument specifies the tag which is configured, the second argument gives the
  1996. number of tag(s) on which @var{id} depends. The following arguments are the
  1997. tags which have to be terminated to unlock the task.
  1998. This function must be called before the associated task is submitted to StarPU
  1999. with @code{starpu_task_submit}.
  2000. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2001. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2002. typically need to be explicitly casted. Using the
  2003. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2004. @cartouche
  2005. @smallexample
  2006. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2007. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2008. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2009. @end smallexample
  2010. @end cartouche
  2011. @end deftypefun
  2012. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  2013. This function is similar to @code{starpu_tag_declare_deps}, except
  2014. that its does not take a variable number of arguments but an array of
  2015. tags of size @var{ndeps}.
  2016. @cartouche
  2017. @smallexample
  2018. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2019. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2020. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2021. @end smallexample
  2022. @end cartouche
  2023. @end deftypefun
  2024. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  2025. This function blocks until the task associated to tag @var{id} has been
  2026. executed. This is a blocking call which must therefore not be called within
  2027. tasks or callbacks, but only from the application directly. It is possible to
  2028. synchronize with the same tag multiple times, as long as the
  2029. @code{starpu_tag_remove} function is not called. Note that it is still
  2030. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2031. data structure was freed (e.g. if the @code{destroy} flag of the
  2032. @code{starpu_task} was enabled).
  2033. @end deftypefun
  2034. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  2035. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2036. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  2037. terminated.
  2038. @end deftypefun
  2039. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  2040. This function can be used to clear the "already notified" status
  2041. of a tag which is not associated with a task. Before that, calling
  2042. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  2043. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  2044. successors.
  2045. @end deftypefun
  2046. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  2047. This function releases the resources associated to tag @var{id}. It can be
  2048. called once the corresponding task has been executed and when there is
  2049. no other tag that depend on this tag anymore.
  2050. @end deftypefun
  2051. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  2052. This function explicitly unlocks tag @var{id}. It may be useful in the
  2053. case of applications which execute part of their computation outside StarPU
  2054. tasks (e.g. third-party libraries). It is also provided as a
  2055. convenient tool for the programmer, for instance to entirely construct the task
  2056. DAG before actually giving StarPU the opportunity to execute the tasks. When
  2057. called several times on the same tag, notification will be done only on first
  2058. call, thus implementing "OR" dependencies, until the tag is restarted using
  2059. @code{starpu_tag_restart}.
  2060. @end deftypefun
  2061. @node Implicit Data Dependencies
  2062. @section Implicit Data Dependencies
  2063. In this section, we describe how StarPU makes it possible to insert implicit
  2064. task dependencies in order to enforce sequential data consistency. When this
  2065. data consistency is enabled on a specific data handle, any data access will
  2066. appear as sequentially consistent from the application. For instance, if the
  2067. application submits two tasks that access the same piece of data in read-only
  2068. mode, and then a third task that access it in write mode, dependencies will be
  2069. added between the two first tasks and the third one. Implicit data dependencies
  2070. are also inserted in the case of data accesses from the application.
  2071. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  2072. Set the default sequential consistency flag. If a non-zero value is passed, a
  2073. sequential data consistency will be enforced for all handles registered after
  2074. this function call, otherwise it is disabled. By default, StarPU enables
  2075. sequential data consistency. It is also possible to select the data consistency
  2076. mode of a specific data handle with the
  2077. @code{starpu_data_set_sequential_consistency_flag} function.
  2078. @end deftypefun
  2079. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  2080. Return the default sequential consistency flag
  2081. @end deftypefun
  2082. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  2083. Sets the data consistency mode associated to a data handle. The consistency
  2084. mode set using this function has the priority over the default mode which can
  2085. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  2086. @end deftypefun
  2087. @node Performance Model API
  2088. @section Performance Model API
  2089. @deftp {Data Type} {enum starpu_perf_archtype}
  2090. Enumerates the various types of architectures.
  2091. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  2092. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  2093. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  2094. @table @asis
  2095. @item @code{STARPU_CPU_DEFAULT}
  2096. @item @code{STARPU_CUDA_DEFAULT}
  2097. @item @code{STARPU_OPENCL_DEFAULT}
  2098. @end table
  2099. @end deftp
  2100. @deftp {Data Type} {enum starpu_perfmodel_type}
  2101. The possible values are:
  2102. @table @asis
  2103. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  2104. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  2105. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  2106. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  2107. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  2108. @end table
  2109. @end deftp
  2110. @deftp {Data Type} {struct starpu_perfmodel}
  2111. @anchor{struct starpu_perfmodel}
  2112. contains all information about a performance model. At least the
  2113. @code{type} and @code{symbol} fields have to be filled when defining a
  2114. performance model for a codelet. For compatibility, make sure to initialize the
  2115. whole structure to zero, either by using explicit memset, or by letting the
  2116. compiler implicitly do it in e.g. static storage case.
  2117. If not provided, other fields have to be zero.
  2118. @table @asis
  2119. @item @code{type}
  2120. is the type of performance model @code{enum starpu_perfmodel_type}:
  2121. @code{STARPU_HISTORY_BASED},
  2122. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  2123. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  2124. @code{per_arch} has to be filled with functions which return the cost in
  2125. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  2126. a function that returns the cost in micro-seconds on a CPU, timing on other
  2127. archs will be determined by multiplying by an arch-specific factor.
  2128. @item @code{const char *symbol}
  2129. is the symbol name for the performance model, which will be used as
  2130. file name to store the model. It must be set otherwise the model will
  2131. be ignored.
  2132. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  2133. This field is deprecated. Use instead the @code{cost_function} field.
  2134. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  2135. Used by @code{STARPU_COMMON}: takes a task and
  2136. implementation number, and must return a task duration estimation in micro-seconds.
  2137. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  2138. Used by @code{STARPU_HISTORY_BASED} and
  2139. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  2140. implementation number, and returns the size to be used as index for
  2141. history and regression.
  2142. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  2143. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  2144. starpu_per_arch_perfmodel} structures.
  2145. @item @code{unsigned is_loaded}
  2146. Whether the performance model is already loaded from the disk.
  2147. @item @code{unsigned benchmarking}
  2148. Whether the performance model is still being calibrated.
  2149. @item @code{pthread_rwlock_t model_rwlock}
  2150. Lock to protect concurrency between loading from disk (W), updating the values
  2151. (W), and making a performance estimation (R).
  2152. @end table
  2153. @end deftp
  2154. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  2155. @table @asis
  2156. @item @code{double sumlny} sum of ln(measured)
  2157. @item @code{double sumlnx} sum of ln(size)
  2158. @item @code{double sumlnx2} sum of ln(size)^2
  2159. @item @code{unsigned long minx} minimum size
  2160. @item @code{unsigned long maxx} maximum size
  2161. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  2162. @item @code{double alpha} estimated = alpha * size ^ beta
  2163. @item @code{double beta}
  2164. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  2165. @item @code{double a, b, c} estimaed = a size ^b + c
  2166. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  2167. @item @code{unsigned nsample} number of sample values for non-linear regression
  2168. @end table
  2169. @end deftp
  2170. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  2171. contains information about the performance model of a given arch.
  2172. @table @asis
  2173. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  2174. This field is deprecated. Use instead the @code{cost_function} field.
  2175. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  2176. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  2177. target arch and implementation number (as mere conveniency, since the array
  2178. is already indexed by these), and must return a task duration estimation in
  2179. micro-seconds.
  2180. @item @code{size_t (*size_base)(struct starpu_task *, enum
  2181. starpu_perf_archtype arch, unsigned nimpl)}
  2182. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  2183. case it depends on the architecture-specific implementation.
  2184. @item @code{struct starpu_htbl32_node *history}
  2185. The history of performance measurements.
  2186. @item @code{struct starpu_perfmodel_history_list *list}
  2187. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  2188. records all execution history measures.
  2189. @item @code{struct starpu_perfmodel_regression_model regression}
  2190. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  2191. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  2192. regression.
  2193. @end table
  2194. @end deftp
  2195. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  2196. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  2197. @end deftypefun
  2198. @deftypefun int starpu_perfmodel_unload_model ({struct starpu_perfmodel} *@var{model})
  2199. unloads the given model which has been previously loaded through the function @code{starpu_perfmodel_load_symbol}
  2200. @end deftypefun
  2201. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  2202. returns the path to the debugging information for the performance model.
  2203. @end deftypefun
  2204. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  2205. returns the architecture name for @var{arch}.
  2206. @end deftypefun
  2207. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  2208. returns the architecture type of a given worker.
  2209. @end deftypefun
  2210. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  2211. prints a list of all performance models on @var{output}.
  2212. @end deftypefun
  2213. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  2214. todo
  2215. @end deftypefun
  2216. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  2217. todo
  2218. @end deftypefun
  2219. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  2220. prints a matrix of bus bandwidths on @var{f}.
  2221. @end deftypefun
  2222. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  2223. prints the affinity devices on @var{f}.
  2224. @end deftypefun
  2225. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  2226. prints a description of the topology on @var{f}.
  2227. @end deftypefun
  2228. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  2229. This feeds the performance model @var{model} with an explicit measurement
  2230. @var{measured}, in addition to measurements done by StarPU itself. This can be
  2231. useful when the application already has an existing set of measurements done
  2232. in good conditions, that StarPU could benefit from instead of doing on-line
  2233. measurements. And example of use can be see in @ref{Performance model example}.
  2234. @end deftypefun
  2235. @node Profiling API
  2236. @section Profiling API
  2237. @deftypefun int starpu_profiling_status_set (int @var{status})
  2238. Thie function sets the profiling status. Profiling is activated by passing
  2239. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  2240. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2241. resets all profiling measurements. When profiling is enabled, the
  2242. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2243. to a valid @code{struct starpu_task_profiling_info} structure containing
  2244. information about the execution of the task.
  2245. Negative return values indicate an error, otherwise the previous status is
  2246. returned.
  2247. @end deftypefun
  2248. @deftypefun int starpu_profiling_status_get (void)
  2249. Return the current profiling status or a negative value in case there was an error.
  2250. @end deftypefun
  2251. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  2252. This function sets the ID used for profiling trace filename. It needs to be
  2253. called before starpu_init.
  2254. @end deftypefun
  2255. @deftp {Data Type} {struct starpu_task_profiling_info}
  2256. This structure contains information about the execution of a task. It is
  2257. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2258. structure if profiling was enabled. The different fields are:
  2259. @table @asis
  2260. @item @code{struct timespec submit_time}
  2261. Date of task submission (relative to the initialization of StarPU).
  2262. @item @code{struct timespec push_start_time}
  2263. Time when the task was submitted to the scheduler.
  2264. @item @code{struct timespec push_end_time}
  2265. Time when the scheduler finished with the task submission.
  2266. @item @code{struct timespec pop_start_time}
  2267. Time when the scheduler started to be requested for a task, and eventually gave
  2268. that task.
  2269. @item @code{struct timespec pop_end_time}
  2270. Time when the scheduler finished providing the task for execution.
  2271. @item @code{struct timespec acquire_data_start_time}
  2272. Time when the worker started fetching input data.
  2273. @item @code{struct timespec acquire_data_end_time}
  2274. Time when the worker finished fetching input data.
  2275. @item @code{struct timespec start_time}
  2276. Date of task execution beginning (relative to the initialization of StarPU).
  2277. @item @code{struct timespec end_time}
  2278. Date of task execution termination (relative to the initialization of StarPU).
  2279. @item @code{struct timespec release_data_start_time}
  2280. Time when the worker started releasing data.
  2281. @item @code{struct timespec release_data_end_time}
  2282. Time when the worker finished releasing data.
  2283. @item @code{struct timespec callback_start_time}
  2284. Time when the worker started the application callback for the task.
  2285. @item @code{struct timespec callback_end_time}
  2286. Time when the worker finished the application callback for the task.
  2287. @item @code{workerid}
  2288. Identifier of the worker which has executed the task.
  2289. @item @code{uint64_t used_cycles}
  2290. Number of cycles used by the task, only available in the MoviSim
  2291. @item @code{uint64_t stall_cycles}
  2292. Number of cycles stalled within the task, only available in the MoviSim
  2293. @item @code{double power_consumed}
  2294. Power consumed by the task, only available in the MoviSim
  2295. @end table
  2296. @end deftp
  2297. @deftp {Data Type} {struct starpu_worker_profiling_info}
  2298. This structure contains the profiling information associated to a
  2299. worker. The different fields are:
  2300. @table @asis
  2301. @item @code{struct timespec start_time}
  2302. Starting date for the reported profiling measurements.
  2303. @item @code{struct timespec total_time}
  2304. Duration of the profiling measurement interval.
  2305. @item @code{struct timespec executing_time}
  2306. Time spent by the worker to execute tasks during the profiling measurement interval.
  2307. @item @code{struct timespec sleeping_time}
  2308. Time spent idling by the worker during the profiling measurement interval.
  2309. @item @code{int executed_tasks}
  2310. Number of tasks executed by the worker during the profiling measurement interval.
  2311. @item @code{uint64_t used_cycles}
  2312. Number of cycles used by the worker, only available in the MoviSim
  2313. @item @code{uint64_t stall_cycles}
  2314. Number of cycles stalled within the worker, only available in the MoviSim
  2315. @item @code{double power_consumed}
  2316. Power consumed by the worker, only available in the MoviSim
  2317. @end table
  2318. @end deftp
  2319. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  2320. Get the profiling info associated to the worker identified by @var{workerid},
  2321. and reset the profiling measurements. If the @var{worker_info} argument is
  2322. NULL, only reset the counters associated to worker @var{workerid}.
  2323. Upon successful completion, this function returns 0. Otherwise, a negative
  2324. value is returned.
  2325. @end deftypefun
  2326. @deftp {Data Type} {struct starpu_bus_profiling_info}
  2327. The different fields are:
  2328. @table @asis
  2329. @item @code{struct timespec start_time}
  2330. Time of bus profiling startup.
  2331. @item @code{struct timespec total_time}
  2332. Total time of bus profiling.
  2333. @item @code{int long long transferred_bytes}
  2334. Number of bytes transferred during profiling.
  2335. @item @code{int transfer_count}
  2336. Number of transfers during profiling.
  2337. @end table
  2338. @end deftp
  2339. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  2340. Get the profiling info associated to the worker designated by @var{workerid},
  2341. and reset the profiling measurements. If worker_info is NULL, only reset the
  2342. counters.
  2343. @end deftypefun
  2344. @deftypefun int starpu_bus_get_count (void)
  2345. Return the number of buses in the machine.
  2346. @end deftypefun
  2347. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2348. Return the identifier of the bus between @var{src} and @var{dst}
  2349. @end deftypefun
  2350. @deftypefun int starpu_bus_get_src (int @var{busid})
  2351. Return the source point of bus @var{busid}
  2352. @end deftypefun
  2353. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2354. Return the destination point of bus @var{busid}
  2355. @end deftypefun
  2356. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2357. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2358. @end deftypefun
  2359. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2360. Converts the given timespec @var{ts} into microseconds.
  2361. @end deftypefun
  2362. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  2363. Displays statistics about the bus on stderr. if the environment
  2364. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2365. automatically by @code{starpu_shutdown()}.
  2366. @end deftypefun
  2367. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  2368. Displays statistics about the workers on stderr if the environment
  2369. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2370. automatically by @code{starpu_shutdown()}.
  2371. @end deftypefun
  2372. @deftypefun void starpu_memory_display_stats ()
  2373. Display statistics about the current data handles registered within
  2374. StarPU. StarPU must have been configured with the option
  2375. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2376. @end deftypefun
  2377. @node Theoretical lower bound on execution time API
  2378. @section Theoretical lower bound on execution time
  2379. @deftypefun void starpu_bound_start (int @var{deps}, int @var{prio})
  2380. Start recording tasks (resets stats). @var{deps} tells whether
  2381. dependencies should be recorded too (this is quite expensive)
  2382. @end deftypefun
  2383. @deftypefun void starpu_bound_stop (void)
  2384. Stop recording tasks
  2385. @end deftypefun
  2386. @deftypefun void starpu_bound_print_dot ({FILE *}@var{output})
  2387. Print the DAG that was recorded
  2388. @end deftypefun
  2389. @deftypefun void starpu_bound_compute ({double *}@var{res}, {double *}@var{integer_res}, int @var{integer})
  2390. Get theoretical upper bound (in ms) (needs glpk support detected by @code{configure} script). It returns 0 if some performance models are not calibrated.
  2391. @end deftypefun
  2392. @deftypefun void starpu_bound_print_lp ({FILE *}@var{output})
  2393. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2394. the lp format
  2395. @end deftypefun
  2396. @deftypefun void starpu_bound_print_mps ({FILE *}@var{output})
  2397. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2398. the mps format
  2399. @end deftypefun
  2400. @deftypefun void starpu_bound_print ({FILE *}@var{output}, int @var{integer})
  2401. Emit statistics of actual execution vs theoretical upper bound. @var{integer}
  2402. permits to choose between integer solving (which takes a long time but is
  2403. correct), and relaxed solving (which provides an approximate solution).
  2404. @end deftypefun
  2405. @node CUDA extensions
  2406. @section CUDA extensions
  2407. @defmac STARPU_USE_CUDA
  2408. This macro is defined when StarPU has been installed with CUDA
  2409. support. It should be used in your code to detect the availability of
  2410. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2411. @end defmac
  2412. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2413. This function gets the current worker's CUDA stream.
  2414. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2415. function is only provided for convenience so that programmers can easily use
  2416. asynchronous operations within codelets without having to create a stream by
  2417. hand. Note that the application is not forced to use the stream provided by
  2418. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2419. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2420. the likelihood of having all transfers overlapped.
  2421. @end deftypefun
  2422. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2423. This function returns a pointer to device properties for worker @var{workerid}
  2424. (assumed to be a CUDA worker).
  2425. @end deftypefun
  2426. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2427. Report a CUDA error.
  2428. @end deftypefun
  2429. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2430. Calls starpu_cuda_report_error, passing the current function, file and line
  2431. position.
  2432. @end defmac
  2433. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2434. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2435. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2436. The function first tries to copy the data asynchronous (unless
  2437. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2438. @var{stream} is @code{NULL}, it copies the data synchronously.
  2439. The function returns @code{-EAGAIN} if the asynchronous launch was
  2440. successfull. It returns 0 if the synchronous copy was successful, or
  2441. fails otherwise.
  2442. @end deftypefun
  2443. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2444. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2445. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2446. the @code{starpu_conf} structure.
  2447. @end deftypefun
  2448. @deftypefun void starpu_cublas_init (void)
  2449. This function initializes CUBLAS on every CUDA device.
  2450. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2451. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2452. controlled by StarPU. This call blocks until CUBLAS has been properly
  2453. initialized on every device.
  2454. @end deftypefun
  2455. @deftypefun void starpu_cublas_shutdown (void)
  2456. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2457. @end deftypefun
  2458. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2459. Report a cublas error.
  2460. @end deftypefun
  2461. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2462. Calls starpu_cublas_report_error, passing the current function, file and line
  2463. position.
  2464. @end defmac
  2465. @node OpenCL extensions
  2466. @section OpenCL extensions
  2467. @menu
  2468. * Writing OpenCL kernels:: Writing OpenCL kernels
  2469. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2470. * Loading OpenCL kernels:: Loading OpenCL kernels
  2471. * OpenCL statistics:: Collecting statistics from OpenCL
  2472. * OpenCL utilities:: Utilities for OpenCL
  2473. @end menu
  2474. @defmac STARPU_USE_OPENCL
  2475. This macro is defined when StarPU has been installed with OpenCL
  2476. support. It should be used in your code to detect the availability of
  2477. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2478. @end defmac
  2479. @node Writing OpenCL kernels
  2480. @subsection Writing OpenCL kernels
  2481. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2482. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2483. @end deftypefun
  2484. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2485. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2486. @end deftypefun
  2487. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2488. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2489. @end deftypefun
  2490. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2491. Return the context of the current worker.
  2492. @end deftypefun
  2493. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2494. Return the computation kernel command queue of the current worker.
  2495. @end deftypefun
  2496. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2497. Sets the arguments of a given kernel. The list of arguments must be given as
  2498. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2499. The last argument must be 0. Returns the number of arguments that were
  2500. successfully set. In case of failure, returns the id of the argument
  2501. that could not be set and @var{err} is set to the error returned by
  2502. OpenCL. Otherwise, returns the number of arguments that were set.
  2503. @cartouche
  2504. @smallexample
  2505. int n;
  2506. cl_int err;
  2507. cl_kernel kernel;
  2508. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2509. sizeof(foo), &foo,
  2510. sizeof(bar), &bar,
  2511. 0);
  2512. if (n != 2)
  2513. fprintf(stderr, "Error : %d\n", err);
  2514. @end smallexample
  2515. @end cartouche
  2516. @end deftypefun
  2517. @node Compiling OpenCL kernels
  2518. @subsection Compiling OpenCL kernels
  2519. Source codes for OpenCL kernels can be stored in a file or in a
  2520. string. StarPU provides functions to build the program executable for
  2521. each available OpenCL device as a @code{cl_program} object. This
  2522. program executable can then be loaded within a specific queue as
  2523. explained in the next section. These are only helpers, Applications
  2524. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2525. use (e.g. different programs on the different OpenCL devices, for
  2526. relocation purpose for instance).
  2527. @deftp {Data Type} {struct starpu_opencl_program}
  2528. Stores the OpenCL programs as compiled for the different OpenCL
  2529. devices. The different fields are:
  2530. @table @asis
  2531. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2532. Stores each program for each OpenCL device.
  2533. @end table
  2534. @end deftp
  2535. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2536. @anchor{starpu_opencl_load_opencl_from_file}
  2537. This function compiles an OpenCL source code stored in a file.
  2538. @end deftypefun
  2539. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2540. This function compiles an OpenCL source code stored in a string.
  2541. @end deftypefun
  2542. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2543. This function unloads an OpenCL compiled code.
  2544. @end deftypefun
  2545. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2546. @anchor{starpu_opencl_load_program_source}
  2547. Store the contents of the file @var{source_file_name} in the buffer
  2548. @var{opencl_program_source}. The file @var{source_file_name} can be
  2549. located in the current directory, or in the directory specified by the
  2550. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2551. directory @code{share/starpu/opencl} of the installation directory of
  2552. StarPU, or in the source directory of StarPU.
  2553. When the file is found, @code{located_file_name} is the full name of
  2554. the file as it has been located on the system, @code{located_dir_name}
  2555. the directory where it has been located. Otherwise, they are both set
  2556. to the empty string.
  2557. @end deftypefun
  2558. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2559. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2560. with the given options @code{build_options} and stores the result in
  2561. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2562. filename as @code{source_file_name}. The compilation is done for every
  2563. OpenCL device, and the filename is suffixed with the vendor id and the
  2564. device id of the OpenCL device.
  2565. @end deftypefun
  2566. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2567. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2568. with the given options @code{build_options} and stores the result in
  2569. the directory @code{$STARPU_HOME/.starpu/opencl}
  2570. with the filename
  2571. @code{file_name}. The compilation is done for every
  2572. OpenCL device, and the filename is suffixed with the vendor id and the
  2573. device id of the OpenCL device.
  2574. @end deftypefun
  2575. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2576. Compile the binary OpenCL kernel identified with @var{id}. For every
  2577. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2578. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2579. @end deftypefun
  2580. @node Loading OpenCL kernels
  2581. @subsection Loading OpenCL kernels
  2582. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2583. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2584. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2585. @var{kernel_name}
  2586. @end deftypefun
  2587. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2588. Release the given @var{kernel}, to be called after kernel execution.
  2589. @end deftypefun
  2590. @node OpenCL statistics
  2591. @subsection OpenCL statistics
  2592. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2593. This function allows to collect statistics on a kernel execution.
  2594. After termination of the kernels, the OpenCL codelet should call this function
  2595. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2596. collect statistics about the kernel execution (used cycles, consumed power).
  2597. @end deftypefun
  2598. @node OpenCL utilities
  2599. @subsection OpenCL utilities
  2600. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2601. Return the error message in English corresponding to @var{status}, an
  2602. OpenCL error code.
  2603. @end deftypefun
  2604. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2605. Given a valid error @var{status}, prints the corresponding error message on
  2606. stdout, along with the given function name @var{func}, the given filename
  2607. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2608. @end deftypefun
  2609. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2610. Call the function @code{starpu_opencl_display_error} with the given
  2611. error @var{status}, the current function name, current file and line
  2612. number, and a empty message.
  2613. @end defmac
  2614. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2615. Call the function @code{starpu_opencl_display_error} and abort.
  2616. @end deftypefun
  2617. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2618. Call the function @code{starpu_opencl_report_error} with the given
  2619. error @var{status}, with the current function name, current file and
  2620. line number, and a empty message.
  2621. @end defmac
  2622. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2623. Call the function @code{starpu_opencl_report_error} with the given
  2624. message and the given error @var{status}, with the current function
  2625. name, current file and line number.
  2626. @end defmac
  2627. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2628. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2629. valid combination of cl_mem_flags values.
  2630. @end deftypefun
  2631. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2632. Copy @var{size} bytes from the given @var{ptr} on
  2633. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2634. @var{offset} is the offset, in bytes, in @var{buffer}.
  2635. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2636. synchronised before returning. If non NULL, @var{event} can be used
  2637. after the call to wait for this particular copy to complete.
  2638. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2639. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2640. was successful, or to 0 if event was NULL.
  2641. @end deftypefun
  2642. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2643. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2644. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2645. @var{offset} is the offset, in bytes, in @var{buffer}.
  2646. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2647. synchronised before returning. If non NULL, @var{event} can be used
  2648. after the call to wait for this particular copy to complete.
  2649. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2650. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2651. was successful, or to 0 if event was NULL.
  2652. @end deftypefun
  2653. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2654. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2655. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2656. OpenCL @var{dst_node}.
  2657. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2658. synchronised before returning. If non NULL, @var{event} can be used
  2659. after the call to wait for this particular copy to complete.
  2660. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2661. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2662. was successful, or to 0 if event was NULL.
  2663. @end deftypefun
  2664. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2665. Copy @var{size} bytes from byte offset @var{src_offset} of
  2666. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2667. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2668. synchronised before returning. If non NULL, @var{event} can be used
  2669. after the call to wait for this particular copy to complete.
  2670. The function returns @code{-EAGAIN} if the asynchronous launch was
  2671. successfull. It returns 0 if the synchronous copy was successful, or
  2672. fails otherwise.
  2673. @end deftypefun
  2674. @node Miscellaneous helpers
  2675. @section Miscellaneous helpers
  2676. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2677. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2678. The @var{asynchronous} parameter indicates whether the function should
  2679. block or not. In the case of an asynchronous call, it is possible to
  2680. synchronize with the termination of this operation either by the means of
  2681. implicit dependencies (if enabled) or by calling
  2682. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2683. this callback function is executed after the handle has been copied, and it is
  2684. given the @var{callback_arg} pointer as argument.
  2685. @end deftypefun
  2686. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2687. This function executes the given function on a subset of workers.
  2688. When calling this method, the offloaded function specified by the first argument is
  2689. executed by every StarPU worker that may execute the function.
  2690. The second argument is passed to the offloaded function.
  2691. The last argument specifies on which types of processing units the function
  2692. should be executed. Similarly to the @var{where} field of the
  2693. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2694. should be executed on every CUDA device and every CPU by passing
  2695. @code{STARPU_CPU|STARPU_CUDA}.
  2696. This function blocks until the function has been executed on every appropriate
  2697. processing units, so that it may not be called from a callback function for
  2698. instance.
  2699. @end deftypefun
  2700. @node FXT Support
  2701. @section FXT Support
  2702. @deftypefun void starpu_fxt_start_profiling (void)
  2703. Start recording the trace. The trace is by default started from
  2704. @code{starpu_init()} call, but can be paused by using
  2705. @code{starpu_fxt_stop_profiling}, in which case
  2706. @code{starpu_fxt_start_profiling} should be called to specify when to resume
  2707. recording events.
  2708. @end deftypefun
  2709. @deftypefun void starpu_fxt_stop_profiling (void)
  2710. Stop recording the trace. The trace is by default stopped at
  2711. @code{starpu_shutdown()} call. @code{starpu_fxt_stop_profiling} can however be
  2712. used to stop it earlier. @code{starpu_fxt_start_profiling} can then be called to
  2713. start recording it again, etc.
  2714. @end deftypefun
  2715. @node MPI
  2716. @section MPI
  2717. @menu
  2718. * Initialisation::
  2719. * Communication::
  2720. * Communication Cache::
  2721. * MPI Insert Task::
  2722. * Collective Operations::
  2723. @end menu
  2724. @node Initialisation
  2725. @subsection Initialisation
  2726. @deftypefun int starpu_mpi_init (int *@var{argc}, char ***@var{argv}, int initialize_mpi)
  2727. Initializes the starpumpi library. @code{initialize_mpi} indicates if
  2728. MPI should be initialized or not by StarPU. If the value is not @code{0},
  2729. MPI will be initialized by calling @code{MPI_Init_Thread(argc, argv,
  2730. MPI_THREAD_SERIALIZED, ...)}.
  2731. @end deftypefun
  2732. @deftypefun int starpu_mpi_initialize (void)
  2733. This function has been made deprecated. One should use instead the
  2734. function @code{starpu_mpi_init()} defined above.
  2735. This function does not call @code{MPI_Init}, it should be called beforehand.
  2736. @end deftypefun
  2737. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  2738. This function has been made deprecated. One should use instead the
  2739. function @code{starpu_mpi_init()} defined above.
  2740. MPI will be initialized by starpumpi by calling @code{MPI_Init_Thread(argc, argv,
  2741. MPI_THREAD_SERIALIZED, ...)}.
  2742. @end deftypefun
  2743. @deftypefun int starpu_mpi_shutdown (void)
  2744. Cleans the starpumpi library. This must be called between calling
  2745. @code{starpu_mpi} functions and @code{starpu_shutdown()}.
  2746. @code{MPI_Finalize()} will be called if StarPU-MPI has been initialized
  2747. by @code{starpu_mpi_init()}.
  2748. @end deftypefun
  2749. @deftypefun void starpu_mpi_comm_amounts_retrieve (size_t *@var{comm_amounts})
  2750. Retrieve the current amount of communications from the current node in
  2751. the array @code{comm_amounts} which must have a size greater or equal
  2752. to the world size. Communications statistics must be enabled
  2753. (@pxref{STARPU_COMM_STATS}).
  2754. @end deftypefun
  2755. @deftypefun void starpu_mpi_set_communication_tag (int @var{tag})
  2756. @anchor{starpu_mpi_set_communication_tag}
  2757. Tell StarPU-MPI which MPI tag to use for all its communications.
  2758. @end deftypefun
  2759. @deftypefun int starpu_mpi_get_communication_tag (void)
  2760. @anchor{starpu_mpi_get_communication_tag}
  2761. Returns the MPI tag which will be used for all StarPU-MPI communications.
  2762. @end deftypefun
  2763. @node Communication
  2764. @subsection Communication
  2765. @deftypefun int starpu_mpi_send (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2766. Performs a standard-mode, blocking send of @var{data_handle} to the
  2767. node @var{dest} using the message tag @code{mpi_tag} within the
  2768. communicator @var{comm}.
  2769. @end deftypefun
  2770. @deftypefun int starpu_mpi_recv (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  2771. Performs a standard-mode, blocking receive in @var{data_handle} from the
  2772. node @var{source} using the message tag @code{mpi_tag} within the
  2773. communicator @var{comm}.
  2774. @end deftypefun
  2775. @deftypefun int starpu_mpi_isend (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2776. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2777. node @var{dest} using the message tag @code{mpi_tag} within the
  2778. communicator @var{comm}. After the call, the pointer to the request
  2779. @var{req} can be used to test or to wait for the completion of the communication.
  2780. @end deftypefun
  2781. @deftypefun int starpu_mpi_irecv (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2782. Posts a nonblocking receive in @var{data_handle} from the
  2783. node @var{source} using the message tag @code{mpi_tag} within the
  2784. communicator @var{comm}. After the call, the pointer to the request
  2785. @var{req} can be used to test or to wait for the completion of the communication.
  2786. @end deftypefun
  2787. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  2788. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2789. node @var{dest} using the message tag @code{mpi_tag} within the
  2790. communicator @var{comm}. On completion, the @var{callback} function is
  2791. called with the argument @var{arg}. Similarly to the pthread detached
  2792. functionality, when a detached communication completes, its resources
  2793. are automatically released back to the system, there is no need to
  2794. test or to wait for the completion of the request.
  2795. @end deftypefun
  2796. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  2797. Posts a nonblocking receive in @var{data_handle} from the
  2798. node @var{source} using the message tag @code{mpi_tag} within the
  2799. communicator @var{comm}. On completion, the @var{callback} function is
  2800. called with the argument @var{arg}. Similarly to the pthread detached
  2801. functionality, when a detached communication completes, its resources
  2802. are automatically released back to the system, there is no need to
  2803. test or to wait for the completion of the request.
  2804. @end deftypefun
  2805. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  2806. Returns when the operation identified by request @var{req} is complete.
  2807. @end deftypefun
  2808. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  2809. If the operation identified by @var{req} is complete, set @var{flag}
  2810. to 1. The @var{status} object is set to contain information on the
  2811. completed operation.
  2812. @end deftypefun
  2813. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  2814. Blocks the caller until all group members of the communicator
  2815. @var{comm} have called it.
  2816. @end deftypefun
  2817. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  2818. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2819. node @var{dest} using the message tag @code{mpi_tag} within the
  2820. communicator @var{comm}. On completion, @var{tag} is unlocked.
  2821. @end deftypefun
  2822. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  2823. Posts a nonblocking receive in @var{data_handle} from the
  2824. node @var{source} using the message tag @code{mpi_tag} within the
  2825. communicator @var{comm}. On completion, @var{tag} is unlocked.
  2826. @end deftypefun
  2827. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  2828. Posts @var{array_size} standard-mode, non blocking send. Each post
  2829. sends the n-th data of the array @var{data_handle} to the n-th node of
  2830. the array @var{dest}
  2831. using the n-th message tag of the array @code{mpi_tag} within the n-th
  2832. communicator of the array
  2833. @var{comm}. On completion of the all the requests, @var{tag} is unlocked.
  2834. @end deftypefun
  2835. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  2836. Posts @var{array_size} nonblocking receive. Each post receives in the
  2837. n-th data of the array @var{data_handle} from the n-th
  2838. node of the array @var{source} using the n-th message tag of the array
  2839. @code{mpi_tag} within the n-th communicator of the array @var{comm}.
  2840. On completion of the all the requests, @var{tag} is unlocked.
  2841. @end deftypefun
  2842. @node Communication Cache
  2843. @subsection Communication Cache
  2844. @deftypefun void starpu_mpi_cache_flush (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  2845. Clear the send and receive communication cache for the data
  2846. @var{data_handle}. The function has to be called synchronously by all
  2847. the MPI nodes.
  2848. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  2849. @end deftypefun
  2850. @deftypefun void starpu_mpi_cache_flush_all_data (MPI_Comm @var{comm})
  2851. Clear the send and receive communication cache for all data. The
  2852. function has to be called synchronously by all the MPI nodes.
  2853. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  2854. @end deftypefun
  2855. @node MPI Insert Task
  2856. @subsection MPI Insert Task
  2857. @deftypefun int starpu_data_set_tag (starpu_data_handle_t @var{handle}, int @var{tag})
  2858. Tell StarPU-MPI which MPI tag to use when exchanging the data.
  2859. @end deftypefun
  2860. @deftypefun int starpu_data_get_tag (starpu_data_handle_t @var{handle})
  2861. Returns the MPI tag to be used when exchanging the data.
  2862. @end deftypefun
  2863. @deftypefun int starpu_data_set_rank (starpu_data_handle_t @var{handle}, int @var{rank})
  2864. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  2865. always keep an up-to-date value, and will by default execute tasks which write
  2866. to it.
  2867. @end deftypefun
  2868. @deftypefun int starpu_data_get_rank (starpu_data_handle_t @var{handle})
  2869. Returns the last value set by @code{starpu_data_set_rank}.
  2870. @end deftypefun
  2871. @deftypefun starpu_data_handle_t starpu_data_get_data_handle_from_tag (int @var{tag})
  2872. Returns the data handle associated to the MPI tag, or NULL if there is not.
  2873. @end deftypefun
  2874. @defmac STARPU_EXECUTE_ON_NODE
  2875. this macro is used when calling @code{starpu_mpi_insert_task}, and
  2876. must be followed by a integer value which specified the node on which
  2877. to execute the codelet.
  2878. @end defmac
  2879. @defmac STARPU_EXECUTE_ON_DATA
  2880. this macro is used when calling @code{starpu_mpi_insert_task}, and
  2881. must be followed by a data handle to specify that the node owning the
  2882. given data will execute the codelet.
  2883. @end defmac
  2884. @deftypefun int starpu_mpi_insert_task (MPI_Comm @var{comm}, struct starpu_codelet *@var{codelet}, ...)
  2885. Create and submit a task corresponding to @var{codelet} with the following
  2886. arguments. The argument list must be zero-terminated.
  2887. The arguments following the codelets are the same types as for the
  2888. function @code{starpu_insert_task} defined in @ref{Insert Task
  2889. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  2890. integer allows to specify the MPI node to execute the codelet. It is also
  2891. possible to specify that the node owning a specific data will execute
  2892. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  2893. handle.
  2894. The internal algorithm is as follows:
  2895. @enumerate
  2896. @item Find out which MPI node is going to execute the codelet.
  2897. @enumerate
  2898. @item If there is only one node owning data in W mode, it will
  2899. be selected;
  2900. @item If there is several nodes owning data in W node, the one
  2901. selected will be the one having the least data in R mode so as
  2902. to minimize the amount of data to be transfered;
  2903. @item The argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  2904. integer can be used to specify the node;
  2905. @item The argument @code{STARPU_EXECUTE_ON_DATA} followed by a
  2906. data handle can be used to specify that the node owing the given
  2907. data will execute the codelet.
  2908. @end enumerate
  2909. @item Send and receive data as requested. Nodes owning data which need to be
  2910. read by the task are sending them to the MPI node which will execute it. The
  2911. latter receives them.
  2912. @item Execute the codelet. This is done by the MPI node selected in the
  2913. 1st step of the algorithm.
  2914. @item If several MPI nodes own data to be written to, send written
  2915. data back to their owners.
  2916. @end enumerate
  2917. The algorithm also includes a communication cache mechanism that
  2918. allows not to send data twice to the same MPI node, unless the data
  2919. has been modified. The cache can be disabled
  2920. (@pxref{STARPU_MPI_CACHE}).
  2921. @c todo parler plus du cache
  2922. @end deftypefun
  2923. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node})
  2924. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  2925. owner if needed. At least the target node and the owner have to call the
  2926. function.
  2927. @end deftypefun
  2928. @deftypefun void starpu_mpi_get_data_on_node_detached (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node}, {void (*}@var{callback})(void*), {void *}@var{arg})
  2929. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  2930. owner if needed. At least the target node and the owner have to call the
  2931. function. On reception, the @var{callback} function is called with the
  2932. argument @var{arg}.
  2933. @end deftypefun
  2934. @node Collective Operations
  2935. @subsection Collective Operations
  2936. @deftypefun void starpu_mpi_redux_data (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  2937. Perform a reduction on the given data. All nodes send the data to its
  2938. owner node which will perform a reduction.
  2939. @end deftypefun
  2940. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  2941. Scatter data among processes of the communicator based on the ownership of
  2942. the data. For each data of the array @var{data_handles}, the
  2943. process @var{root} sends the data to the process owning this data.
  2944. Processes receiving data must have valid data handles to receive them.
  2945. On completion of the collective communication, the @var{scallback} function is
  2946. called with the argument @var{sarg} on the process @var{root}, the @var{rcallback} function is
  2947. called with the argument @var{rarg} on any other process.
  2948. @end deftypefun
  2949. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  2950. Gather data from the different processes of the communicator onto the
  2951. process @var{root}. Each process owning data handle in the array
  2952. @var{data_handles} will send them to the process @var{root}. The
  2953. process @var{root} must have valid data handles to receive the data.
  2954. On completion of the collective communication, the @var{rcallback} function is
  2955. called with the argument @var{rarg} on the process @var{root}, the @var{scallback} function is
  2956. called with the argument @var{sarg} on any other process.
  2957. @end deftypefun
  2958. @node Task Bundles
  2959. @section Task Bundles
  2960. @deftp {Data Type} {starpu_task_bundle_t}
  2961. Opaque structure describing a list of tasks that should be scheduled
  2962. on the same worker whenever it's possible. It must be considered as a
  2963. hint given to the scheduler as there is no guarantee that they will be
  2964. executed on the same worker.
  2965. @end deftp
  2966. @deftypefun void starpu_task_bundle_create ({starpu_task_bundle_t *}@var{bundle})
  2967. Factory function creating and initializing @var{bundle}, when the call returns, memory needed is allocated and @var{bundle} is ready to use.
  2968. @end deftypefun
  2969. @deftypefun int starpu_task_bundle_insert (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  2970. Insert @var{task} in @var{bundle}. Until @var{task} is removed from @var{bundle} its expected length and data transfer time will be considered along those of the other tasks of @var{bundle}.
  2971. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted.
  2972. @end deftypefun
  2973. @deftypefun int starpu_task_bundle_remove (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  2974. Remove @var{task} from @var{bundle}.
  2975. Of course @var{task} must have been previously inserted @var{bundle}.
  2976. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted. Doing so would result in undefined behaviour.
  2977. @end deftypefun
  2978. @deftypefun void starpu_task_bundle_close (starpu_task_bundle_t @var{bundle})
  2979. Inform the runtime that the user won't modify @var{bundle} anymore, it means no more inserting or removing task. Thus the runtime can destroy it when possible.
  2980. @end deftypefun
  2981. @deftypefun double starpu_task_bundle_expected_length (starpu_task_bundle_t @var{bundle}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  2982. Return the expected duration of the entire task bundle in µs.
  2983. @end deftypefun
  2984. @deftypefun double starpu_task_bundle_expected_power (starpu_task_bundle_t @var{bundle}, enum starpu_perf_archtype @var{arch}, unsigned @var{nimpl})
  2985. Return the expected power consumption of the entire task bundle in J.
  2986. @end deftypefun
  2987. @deftypefun double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t @var{bundle}, unsigned @var{memory_node})
  2988. Return the time (in µs) expected to transfer all data used within the bundle.
  2989. @end deftypefun
  2990. @node Task Lists
  2991. @section Task Lists
  2992. @deftp {Data Type} {struct starpu_task_list}
  2993. Stores a double-chained list of tasks
  2994. @end deftp
  2995. @deftypefun void starpu_task_list_init ({struct starpu_task_list *}@var{list})
  2996. Initialize a list structure
  2997. @end deftypefun
  2998. @deftypefun void starpu_task_list_push_front ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  2999. Push a task at the front of a list
  3000. @end deftypefun
  3001. @deftypefun void starpu_task_list_push_back ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3002. Push a task at the back of a list
  3003. @end deftypefun
  3004. @deftypefun {struct starpu_task *} starpu_task_list_front ({struct starpu_task_list *}@var{list})
  3005. Get the front of the list (without removing it)
  3006. @end deftypefun
  3007. @deftypefun {struct starpu_task *} starpu_task_list_back ({struct starpu_task_list *}@var{list})
  3008. Get the back of the list (without removing it)
  3009. @end deftypefun
  3010. @deftypefun int starpu_task_list_empty ({struct starpu_task_list *}@var{list})
  3011. Test if a list is empty
  3012. @end deftypefun
  3013. @deftypefun void starpu_task_list_erase ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3014. Remove an element from the list
  3015. @end deftypefun
  3016. @deftypefun {struct starpu_task *} starpu_task_list_pop_front ({struct starpu_task_list *}@var{list})
  3017. Remove the element at the front of the list
  3018. @end deftypefun
  3019. @deftypefun {struct starpu_task *} starpu_task_list_pop_back ({struct starpu_task_list *}@var{list})
  3020. Remove the element at the back of the list
  3021. @end deftypefun
  3022. @deftypefun {struct starpu_task *} starpu_task_list_begin ({struct starpu_task_list *}@var{list})
  3023. Get the first task of the list.
  3024. @end deftypefun
  3025. @deftypefun {struct starpu_task *} starpu_task_list_end ({struct starpu_task_list *}@var{list})
  3026. Get the end of the list.
  3027. @end deftypefun
  3028. @deftypefun {struct starpu_task *} starpu_task_list_next ({struct starpu_task *}@var{task})
  3029. Get the next task of the list. This is not erase-safe.
  3030. @end deftypefun
  3031. @node Using Parallel Tasks
  3032. @section Using Parallel Tasks
  3033. These are used by parallel tasks:
  3034. @deftypefun int starpu_combined_worker_get_size (void)
  3035. Return the size of the current combined worker, i.e. the total number of cpus
  3036. running the same task in the case of SPMD parallel tasks, or the total number
  3037. of threads that the task is allowed to start in the case of FORKJOIN parallel
  3038. tasks.
  3039. @end deftypefun
  3040. @deftypefun int starpu_combined_worker_get_rank (void)
  3041. Return the rank of the current thread within the combined worker. Can only be
  3042. used in FORKJOIN parallel tasks, to know which part of the task to work on.
  3043. @end deftypefun
  3044. Most of these are used for schedulers which support parallel tasks.
  3045. @deftypefun unsigned starpu_combined_worker_get_count (void)
  3046. Return the number of different combined workers.
  3047. @end deftypefun
  3048. @deftypefun int starpu_combined_worker_get_id (void)
  3049. Return the identifier of the current combined worker.
  3050. @end deftypefun
  3051. @deftypefun int starpu_combined_worker_assign_workerid (int @var{nworkers}, int @var{workerid_array}[])
  3052. Register a new combined worker and get its identifier
  3053. @end deftypefun
  3054. @deftypefun int starpu_combined_worker_get_description (int @var{workerid}, {int *}@var{worker_size}, {int **}@var{combined_workerid})
  3055. Get the description of a combined worker
  3056. @end deftypefun
  3057. @deftypefun int starpu_combined_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned @var{nimpl})
  3058. Variant of starpu_worker_can_execute_task compatible with combined workers
  3059. @end deftypefun
  3060. @deftypefun void starpu_parallel_task_barrier_init ({struct starpu_task* }@var{task}, int @var{workerid})
  3061. Initialise the barrier for the parallel task, and dispatch the task
  3062. between the different combined workers
  3063. @end deftypefun
  3064. @deftp {Data Type} {struct starpu_machine_topology}
  3065. @table @asis
  3066. @item @code{unsigned nworkers}
  3067. Total number of workers.
  3068. @item @code{unsigned ncombinedworkers}
  3069. Total number of combined workers.
  3070. @item @code{hwloc_topology_t hwtopology}
  3071. Topology as detected by hwloc.
  3072. To maintain ABI compatibility when hwloc is not available, the field
  3073. is replaced with @code{void *dummy}
  3074. @item @code{unsigned nhwcpus}
  3075. Total number of CPUs, as detected by the topology code. May be different from
  3076. the actual number of CPU workers.
  3077. @item @code{unsigned nhwcudagpus}
  3078. Total number of CUDA devices, as detected. May be different from the actual
  3079. number of CUDA workers.
  3080. @item @code{unsigned nhwopenclgpus}
  3081. Total number of OpenCL devices, as detected. May be different from the actual
  3082. number of CUDA workers.
  3083. @item @code{unsigned ncpus}
  3084. Actual number of CPU workers used by StarPU.
  3085. @item @code{unsigned ncudagpus}
  3086. Actual number of CUDA workers used by StarPU.
  3087. @item @code{unsigned nopenclgpus}
  3088. Actual number of OpenCL workers used by StarPU.
  3089. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  3090. Indicates the successive cpu identifier that should be used to bind the
  3091. workers. It is either filled according to the user's explicit
  3092. parameters (from starpu_conf) or according to the STARPU_WORKERS_CPUID env.
  3093. variable. Otherwise, a round-robin policy is used to distributed the workers
  3094. over the cpus.
  3095. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  3096. Indicates the successive cpu identifier that should be used by the CUDA
  3097. driver. It is either filled according to the user's explicit parameters (from
  3098. starpu_conf) or according to the STARPU_WORKERS_CUDAID env. variable. Otherwise,
  3099. they are taken in ID order.
  3100. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  3101. Indicates the successive cpu identifier that should be used by the OpenCL
  3102. driver. It is either filled according to the user's explicit parameters (from
  3103. starpu_conf) or according to the STARPU_WORKERS_OPENCLID env. variable. Otherwise,
  3104. they are taken in ID order.
  3105. @end table
  3106. @end deftp
  3107. @node Scheduling Contexts
  3108. @section Scheduling Contexts
  3109. StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the other hand grouping tasks in bundles that will be executed by a single specified worker.
  3110. In contrast when we group workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to the context.
  3111. Scheduling contexts can be created, deleted and modified dynamically.
  3112. @deftypefun unsigned starpu_sched_ctx_create (const char *@var{policy_name}, int *@var{workerids_ctx}, int @var{nworkers_ctx}, const char *@var{sched_ctx_name})
  3113. This function creates a scheduling context which uses the scheduling policy indicated in the first argument and assigns the workers indicated in the second argument to execute the tasks submitted to it.
  3114. The return value represents the identifier of the context that has just been created. It will be further used to indicate the context the tasks will be submitted to. The return value should be at most @code{STARPU_NMAX_SCHED_CTXS}.
  3115. @end deftypefun
  3116. @deftypefun void starpu_sched_ctx_delete (unsigned @var{sched_ctx_id})
  3117. Delete scheduling context @var{sched_ctx_id} and transfer remaining workers to the inheritor scheduling context.
  3118. @end deftypefun
  3119. @deftypefun void starpu_sched_ctx_add_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3120. This function adds dynamically the workers indicated in the first argument to the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3121. @end deftypefun
  3122. @deftypefun void starpu_sched_ctx_remove_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3123. This function removes the workers indicated in the first argument from the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3124. @end deftypefun
  3125. A scheduling context manages a collection of workers that can be memorized using different data structures. Thus, a generic structure is available in order to simplify the choice of its type.
  3126. Only the list data structure is available but further data structures(like tree) implementations are foreseen.
  3127. @deftp {Data Type} {struct starpu_worker_collection}
  3128. @table @asis
  3129. @item @code{void *workerids}
  3130. The workerids managed by the collection
  3131. @item @code{unsigned nworkers}
  3132. The number of workerids
  3133. @item @code{pthread_key_t cursor_key} (optional)
  3134. The cursor needed to iterate the collection (depending on the data structure)
  3135. @item @code{int type}
  3136. The type of structure (currently STARPU_WORKER_LIST is the only one available)
  3137. @item @code{unsigned (*has_next)(struct starpu_worker_collection *workers)}
  3138. Checks if there is a next worker
  3139. @item @code{int (*get_next)(struct starpu_worker_collection *workers)}
  3140. Gets the next worker
  3141. @item @code{int (*add)(struct starpu_worker_collection *workers, int worker)}
  3142. Adds a worker to the collection
  3143. @item @code{int (*remove)(struct starpu_worker_collection *workers, int worker)}
  3144. Removes a worker from the collection
  3145. @item @code{void* (*init)(struct starpu_worker_collection *workers)}
  3146. Initialize the collection
  3147. @item @code{void (*deinit)(struct starpu_worker_collection *workers)}
  3148. Deinitialize the colection
  3149. @item @code{void (*init_cursor)(struct starpu_worker_collection *workers)} (optional)
  3150. Initialize the cursor if there is one
  3151. @item @code{void (*deinit_cursor)(struct starpu_worker_collection *workers)} (optional)
  3152. Deinitialize the cursor if there is one
  3153. @end table
  3154. @end deftp
  3155. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_create_worker_collection (unsigned @var{sched_ctx_id}, int @var{type})
  3156. Create a worker collection of the type indicated by the last parameter for the context specified through the first parameter.
  3157. @end deftypefun
  3158. @deftypefun void starpu_sched_ctx_delete_worker_collection (unsigned @var{sched_ctx_id})
  3159. Delete the worker collection of the specified scheduling context
  3160. @end deftypefun
  3161. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_get_worker_collection (unsigned @var{sched_ctx_id})
  3162. Return the worker collection managed by the indicated context
  3163. @end deftypefun
  3164. @deftypefun void starpu_sched_ctx_set_context (unsigned *@var{sched_ctx_id})
  3165. Set the scheduling context the subsequent tasks will be submitted to
  3166. @end deftypefun
  3167. @deftypefun unsigned starpu_sched_ctx_get_context (void)
  3168. Return the scheduling context the tasks are currently submitted to
  3169. @end deftypefun
  3170. @deftypefun unsigned starpu_sched_ctx_get_nworkers (unsigned @var{sched_ctx_id})
  3171. Return the number of workers managed by the specified contexts
  3172. (Usually needed to verify if it manages any workers or if it should be blocked)
  3173. @end deftypefun
  3174. @deftypefun unsigned starpu_sched_ctx_get_nshared_workers (unsigned @var{sched_ctx_id}, unsigned @var{sched_ctx_id2})
  3175. Return the number of workers shared by two contexts
  3176. @end deftypefun
  3177. @deftypefun int starpu_sched_ctx_set_min_priority (unsigned @var{sched_ctx_id}, int @var{min_prio})
  3178. Defines the minimum task priority level supported by the scheduling
  3179. policy of the given scheduler context. The
  3180. default minimum priority level is the same as the default priority level which
  3181. is 0 by convention. The application may access that value by calling the
  3182. @code{starpu_sched_ctx_get_min_priority} function. This function should only be
  3183. called from the initialization method of the scheduling policy, and should not
  3184. be used directly from the application.
  3185. @end deftypefun
  3186. @deftypefun int starpu_sched_ctx_set_max_priority (unsigned @var{sched_ctx_id}, int @var{max_prio})
  3187. Defines the maximum priority level supported by the scheduling policy of the given scheduler context. The
  3188. default maximum priority level is 1. The application may access that value by
  3189. calling the @code{starpu_sched_ctx_get_max_priority} function. This function should
  3190. only be called from the initialization method of the scheduling policy, and
  3191. should not be used directly from the application.
  3192. @end deftypefun
  3193. @deftypefun int starpu_sched_ctx_get_min_priority (unsigned @var{sched_ctx_id})
  3194. Returns the current minimum priority level supported by the
  3195. scheduling policy of the given scheduler context.
  3196. @end deftypefun
  3197. @deftypefun int starpu_sched_ctx_get_max_priority (unsigned @var{sched_ctx_id})
  3198. Returns the current maximum priority level supported by the
  3199. scheduling policy of the given scheduler context.
  3200. @end deftypefun
  3201. @node Scheduling Policy
  3202. @section Scheduling Policy
  3203. TODO
  3204. While StarPU comes with a variety of scheduling policies (@pxref{Task
  3205. scheduling policy}), it may sometimes be desirable to implement custom
  3206. policies to address specific problems. The API described below allows
  3207. users to write their own scheduling policy.
  3208. @deftp {Data Type} {struct starpu_sched_policy}
  3209. This structure contains all the methods that implement a scheduling policy. An
  3210. application may specify which scheduling strategy in the @code{sched_policy}
  3211. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3212. function. The different fields are:
  3213. @table @asis
  3214. @item @code{void (*init_sched)(unsigned sched_ctx_id)}
  3215. Initialize the scheduling policy.
  3216. @item @code{void (*deinit_sched)(unsigned sched_ctx_id)}
  3217. Cleanup the scheduling policy.
  3218. @item @code{int (*push_task)(struct starpu_task *)}
  3219. Insert a task into the scheduler.
  3220. @item @code{void (*push_task_notify)(struct starpu_task *, int workerid)}
  3221. Notify the scheduler that a task was pushed on a given worker. This method is
  3222. called when a task that was explicitely assigned to a worker becomes ready and
  3223. is about to be executed by the worker. This method therefore permits to keep
  3224. the state of of the scheduler coherent even when StarPU bypasses the scheduling
  3225. strategy.
  3226. @item @code{struct starpu_task *(*pop_task)(unsigned sched_ctx_id)} (optional)
  3227. Get a task from the scheduler. The mutex associated to the worker is already
  3228. taken when this method is called. If this method is defined as @code{NULL}, the
  3229. worker will only execute tasks from its local queue. In this case, the
  3230. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3231. assign tasks to the different workers.
  3232. @item @code{struct starpu_task *(*pop_every_task)(unsigned sched_ctx_id)}
  3233. Remove all available tasks from the scheduler (tasks are chained by the means
  3234. of the prev and next fields of the starpu_task structure). The mutex associated
  3235. to the worker is already taken when this method is called. This is currently
  3236. not used.
  3237. @item @code{void (*pre_exec_hook)(struct starpu_task *)} (optional)
  3238. This method is called every time a task is starting.
  3239. @item @code{void (*post_exec_hook)(struct starpu_task *)} (optional)
  3240. This method is called every time a task has been executed.
  3241. @item @code{void (*add_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3242. Initialize scheduling structures corresponding to each worker used by the policy.
  3243. @item @code{void (*remove_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3244. Deinitialize scheduling structures corresponding to each worker used by the policy.
  3245. @item @code{const char *policy_name} (optional)
  3246. Name of the policy.
  3247. @item @code{const char *policy_description} (optional)
  3248. Description of the policy.
  3249. @end table
  3250. @end deftp
  3251. @deftypefun {struct starpu_sched_policy **} starpu_sched_get_predefined_policies ()
  3252. Return an NULL-terminated array of all the predefined scheduling policies.
  3253. @end deftypefun
  3254. @deftypefun void starpu_sched_ctx_set_policy_data (unsigned @var{sched_ctx_id}, {void *} @var{policy_data})
  3255. Each scheduling policy uses some specific data (queues, variables, additional condition variables).
  3256. It is memorize through a local structure. This function assigns it to a scheduling context.
  3257. @end deftypefun
  3258. @deftypefun void* starpu_sched_ctx_get_policy_data (unsigned @var{sched_ctx_id})
  3259. Returns the policy data previously assigned to a context
  3260. @end deftypefun
  3261. @deftypefun int starpu_sched_set_min_priority (int @var{min_prio})
  3262. Defines the minimum task priority level supported by the scheduling policy. The
  3263. default minimum priority level is the same as the default priority level which
  3264. is 0 by convention. The application may access that value by calling the
  3265. @code{starpu_sched_get_min_priority} function. This function should only be
  3266. called from the initialization method of the scheduling policy, and should not
  3267. be used directly from the application.
  3268. @end deftypefun
  3269. @deftypefun int starpu_sched_set_max_priority (int @var{max_prio})
  3270. Defines the maximum priority level supported by the scheduling policy. The
  3271. default maximum priority level is 1. The application may access that value by
  3272. calling the @code{starpu_sched_get_max_priority} function. This function should
  3273. only be called from the initialization method of the scheduling policy, and
  3274. should not be used directly from the application.
  3275. @end deftypefun
  3276. @deftypefun int starpu_sched_get_min_priority (void)
  3277. Returns the current minimum priority level supported by the
  3278. scheduling policy
  3279. @end deftypefun
  3280. @deftypefun int starpu_sched_get_max_priority (void)
  3281. Returns the current maximum priority level supported by the
  3282. scheduling policy
  3283. @end deftypefun
  3284. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3285. The scheduling policy may put tasks directly into a worker's local queue so
  3286. that it is not always necessary to create its own queue when the local queue
  3287. is sufficient. If @var{back} not null, @var{task} is put at the back of the queue
  3288. where the worker will pop tasks first. Setting @var{back} to 0 therefore ensures
  3289. a FIFO ordering.
  3290. @end deftypefun
  3291. @deftypefun int starpu_push_task_end ({struct starpu_task} *@var{task})
  3292. This function must be called by a scheduler to notify that the given
  3293. task has just been pushed.
  3294. @end deftypefun
  3295. @deftypefun int starpu_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned {nimpl})
  3296. Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute.
  3297. @end deftypefun
  3298. @deftypefun double starpu_timing_now (void)
  3299. Return the current date in µs
  3300. @end deftypefun
  3301. @deftypefun uint32_t starpu_task_footprint ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *} @var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  3302. Returns the footprint for a given task
  3303. @end deftypefun
  3304. @deftypefun double starpu_task_expected_length ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  3305. Returns expected task duration in µs
  3306. @end deftypefun
  3307. @deftypefun double starpu_worker_get_relative_speedup ({enum starpu_perf_archtype} @var{perf_archtype})
  3308. Returns an estimated speedup factor relative to CPU speed
  3309. @end deftypefun
  3310. @deftypefun double starpu_task_expected_data_transfer_time (unsigned @var{memory_node}, {struct starpu_task *}@var{task})
  3311. Returns expected data transfer time in µs
  3312. @end deftypefun
  3313. @deftypefun double starpu_data_expected_transfer_time (starpu_data_handle_t @var{handle}, unsigned @var{memory_node}, {enum starpu_access_mode} @var{mode})
  3314. Predict the transfer time (in µs) to move a handle to a memory node
  3315. @end deftypefun
  3316. @deftypefun double starpu_task_expected_power ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  3317. Returns expected power consumption in J
  3318. @end deftypefun
  3319. @deftypefun double starpu_task_expected_conversion_time ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned {nimpl})
  3320. Returns expected conversion time in ms (multiformat interface only)
  3321. @end deftypefun
  3322. @node Running drivers
  3323. @section Running drivers
  3324. @deftypefun int starpu_driver_run ({struct starpu_driver *}@var{d})
  3325. Initialize the given driver, run it until it receives a request to terminate,
  3326. deinitialize it and return 0 on success. It returns -EINVAL if @code{d->type}
  3327. is not a valid StarPU device type (STARPU_CPU_WORKER, STARPU_CUDA_WORKER or
  3328. STARPU_OPENCL_WORKER). This is the same as using the following
  3329. functions: calling @code{starpu_driver_init()}, then calling
  3330. @code{starpu_driver_run_once()} in a loop, and eventually
  3331. @code{starpu_driver_deinit()}.
  3332. @end deftypefun
  3333. @deftypefun int starpu_driver_init (struct starpu_driver *@var{d})
  3334. Initialize the given driver. Returns 0 on success, -EINVAL if
  3335. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3336. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3337. @end deftypefun
  3338. @deftypefun int starpu_driver_run_once (struct starpu_driver *@var{d})
  3339. Run the driver once, then returns 0 on success, -EINVAL if
  3340. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3341. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3342. @end deftypefun
  3343. @deftypefun int starpu_driver_deinit (struct starpu_driver *@var{d})
  3344. Deinitialize the given driver. Returns 0 on success, -EINVAL if
  3345. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3346. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3347. @end deftypefun
  3348. @deftypefun void starpu_drivers_request_termination (void)
  3349. Notify all running drivers they should terminate.
  3350. @end deftypefun
  3351. @node Expert mode
  3352. @section Expert mode
  3353. @deftypefun void starpu_wake_all_blocked_workers (void)
  3354. Wake all the workers, so they can inspect data requests and task submissions
  3355. again.
  3356. @end deftypefun
  3357. @deftypefun int starpu_progression_hook_register (unsigned (*@var{func})(void *arg), void *@var{arg})
  3358. Register a progression hook, to be called when workers are idle.
  3359. @end deftypefun
  3360. @deftypefun void starpu_progression_hook_deregister (int @var{hook_id})
  3361. Unregister a given progression hook.
  3362. @end deftypefun