| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 | 
							- /* dtrsna.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static logical c_true = TRUE_;
 
- static logical c_false = FALSE_;
 
- /* Subroutine */ int _starpu_dtrsna_(char *job, char *howmny, logical *select, 
 
- 	integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
 
- 	ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep, 
 
- 	integer *mm, integer *m, doublereal *work, integer *ldwork, integer *
 
- 	iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, 
 
- 	    work_dim1, work_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k, n2;
 
-     doublereal cs;
 
-     integer nn, ks;
 
-     doublereal sn, mu, eps, est;
 
-     integer kase;
 
-     doublereal cond;
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     logical pair;
 
-     integer ierr;
 
-     doublereal dumm, prod;
 
-     integer ifst;
 
-     doublereal lnrm;
 
-     integer ilst;
 
-     doublereal rnrm;
 
-     extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
 
-     doublereal prod1, prod2, scale, delta;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer isave[3];
 
-     logical wants;
 
-     doublereal dummy[1];
 
-     extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *);
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     logical wantbh;
 
-     extern /* Subroutine */ int _starpu_dlaqtr_(logical *, logical *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, doublereal *, integer *), _starpu_dtrexc_(char *, integer *
 
- , doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *);
 
-     logical somcon;
 
-     doublereal smlnum;
 
-     logical wantsp;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTRSNA estimates reciprocal condition numbers for specified */
 
- /*  eigenvalues and/or right eigenvectors of a real upper */
 
- /*  quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
 
- /*  orthogonal). */
 
- /*  T must be in Schur canonical form (as returned by DHSEQR), that is, */
 
- /*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
 
- /*  2-by-2 diagonal block has its diagonal elements equal and its */
 
- /*  off-diagonal elements of opposite sign. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOB     (input) CHARACTER*1 */
 
- /*          Specifies whether condition numbers are required for */
 
- /*          eigenvalues (S) or eigenvectors (SEP): */
 
- /*          = 'E': for eigenvalues only (S); */
 
- /*          = 'V': for eigenvectors only (SEP); */
 
- /*          = 'B': for both eigenvalues and eigenvectors (S and SEP). */
 
- /*  HOWMNY  (input) CHARACTER*1 */
 
- /*          = 'A': compute condition numbers for all eigenpairs; */
 
- /*          = 'S': compute condition numbers for selected eigenpairs */
 
- /*                 specified by the array SELECT. */
 
- /*  SELECT  (input) LOGICAL array, dimension (N) */
 
- /*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
 
- /*          condition numbers are required. To select condition numbers */
 
- /*          for the eigenpair corresponding to a real eigenvalue w(j), */
 
- /*          SELECT(j) must be set to .TRUE.. To select condition numbers */
 
- /*          corresponding to a complex conjugate pair of eigenvalues w(j) */
 
- /*          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
 
- /*          set to .TRUE.. */
 
- /*          If HOWMNY = 'A', SELECT is not referenced. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix T. N >= 0. */
 
- /*  T       (input) DOUBLE PRECISION array, dimension (LDT,N) */
 
- /*          The upper quasi-triangular matrix T, in Schur canonical form. */
 
- /*  LDT     (input) INTEGER */
 
- /*          The leading dimension of the array T. LDT >= max(1,N). */
 
- /*  VL      (input) DOUBLE PRECISION array, dimension (LDVL,M) */
 
- /*          If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
 
- /*          (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
 
- /*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
 
- /*          must be stored in consecutive columns of VL, as returned by */
 
- /*          DHSEIN or DTREVC. */
 
- /*          If JOB = 'V', VL is not referenced. */
 
- /*  LDVL    (input) INTEGER */
 
- /*          The leading dimension of the array VL. */
 
- /*          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
 
- /*  VR      (input) DOUBLE PRECISION array, dimension (LDVR,M) */
 
- /*          If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
 
- /*          (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
 
- /*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
 
- /*          must be stored in consecutive columns of VR, as returned by */
 
- /*          DHSEIN or DTREVC. */
 
- /*          If JOB = 'V', VR is not referenced. */
 
- /*  LDVR    (input) INTEGER */
 
- /*          The leading dimension of the array VR. */
 
- /*          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
 
- /*  S       (output) DOUBLE PRECISION array, dimension (MM) */
 
- /*          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
 
- /*          selected eigenvalues, stored in consecutive elements of the */
 
- /*          array. For a complex conjugate pair of eigenvalues two */
 
- /*          consecutive elements of S are set to the same value. Thus */
 
- /*          S(j), SEP(j), and the j-th columns of VL and VR all */
 
- /*          correspond to the same eigenpair (but not in general the */
 
- /*          j-th eigenpair, unless all eigenpairs are selected). */
 
- /*          If JOB = 'V', S is not referenced. */
 
- /*  SEP     (output) DOUBLE PRECISION array, dimension (MM) */
 
- /*          If JOB = 'V' or 'B', the estimated reciprocal condition */
 
- /*          numbers of the selected eigenvectors, stored in consecutive */
 
- /*          elements of the array. For a complex eigenvector two */
 
- /*          consecutive elements of SEP are set to the same value. If */
 
- /*          the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
 
- /*          is set to 0; this can only occur when the true value would be */
 
- /*          very small anyway. */
 
- /*          If JOB = 'E', SEP is not referenced. */
 
- /*  MM      (input) INTEGER */
 
- /*          The number of elements in the arrays S (if JOB = 'E' or 'B') */
 
- /*           and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
 
- /*  M       (output) INTEGER */
 
- /*          The number of elements of the arrays S and/or SEP actually */
 
- /*          used to store the estimated condition numbers. */
 
- /*          If HOWMNY = 'A', M is set to N. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,N+6) */
 
- /*          If JOB = 'E', WORK is not referenced. */
 
- /*  LDWORK  (input) INTEGER */
 
- /*          The leading dimension of the array WORK. */
 
- /*          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (2*(N-1)) */
 
- /*          If JOB = 'E', IWORK is not referenced. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The reciprocal of the condition number of an eigenvalue lambda is */
 
- /*  defined as */
 
- /*          S(lambda) = |v'*u| / (norm(u)*norm(v)) */
 
- /*  where u and v are the right and left eigenvectors of T corresponding */
 
- /*  to lambda; v' denotes the conjugate-transpose of v, and norm(u) */
 
- /*  denotes the Euclidean norm. These reciprocal condition numbers always */
 
- /*  lie between zero (very badly conditioned) and one (very well */
 
- /*  conditioned). If n = 1, S(lambda) is defined to be 1. */
 
- /*  An approximate error bound for a computed eigenvalue W(i) is given by */
 
- /*                      EPS * norm(T) / S(i) */
 
- /*  where EPS is the machine precision. */
 
- /*  The reciprocal of the condition number of the right eigenvector u */
 
- /*  corresponding to lambda is defined as follows. Suppose */
 
- /*              T = ( lambda  c  ) */
 
- /*                  (   0    T22 ) */
 
- /*  Then the reciprocal condition number is */
 
- /*          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) */
 
- /*  where sigma-min denotes the smallest singular value. We approximate */
 
- /*  the smallest singular value by the reciprocal of an estimate of the */
 
- /*  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
 
- /*  defined to be abs(T(1,1)). */
 
- /*  An approximate error bound for a computed right eigenvector VR(i) */
 
- /*  is given by */
 
- /*                      EPS * norm(T) / SEP(i) */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and test the input parameters */
 
-     /* Parameter adjustments */
 
-     --select;
 
-     t_dim1 = *ldt;
 
-     t_offset = 1 + t_dim1;
 
-     t -= t_offset;
 
-     vl_dim1 = *ldvl;
 
-     vl_offset = 1 + vl_dim1;
 
-     vl -= vl_offset;
 
-     vr_dim1 = *ldvr;
 
-     vr_offset = 1 + vr_dim1;
 
-     vr -= vr_offset;
 
-     --s;
 
-     --sep;
 
-     work_dim1 = *ldwork;
 
-     work_offset = 1 + work_dim1;
 
-     work -= work_offset;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantbh = _starpu_lsame_(job, "B");
 
-     wants = _starpu_lsame_(job, "E") || wantbh;
 
-     wantsp = _starpu_lsame_(job, "V") || wantbh;
 
-     somcon = _starpu_lsame_(howmny, "S");
 
-     *info = 0;
 
-     if (! wants && ! wantsp) {
 
- 	*info = -1;
 
-     } else if (! _starpu_lsame_(howmny, "A") && ! somcon) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*ldt < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldvl < 1 || wants && *ldvl < *n) {
 
- 	*info = -8;
 
-     } else if (*ldvr < 1 || wants && *ldvr < *n) {
 
- 	*info = -10;
 
-     } else {
 
- /*        Set M to the number of eigenpairs for which condition numbers */
 
- /*        are required, and test MM. */
 
- 	if (somcon) {
 
- 	    *m = 0;
 
- 	    pair = FALSE_;
 
- 	    i__1 = *n;
 
- 	    for (k = 1; k <= i__1; ++k) {
 
- 		if (pair) {
 
- 		    pair = FALSE_;
 
- 		} else {
 
- 		    if (k < *n) {
 
- 			if (t[k + 1 + k * t_dim1] == 0.) {
 
- 			    if (select[k]) {
 
- 				++(*m);
 
- 			    }
 
- 			} else {
 
- 			    pair = TRUE_;
 
- 			    if (select[k] || select[k + 1]) {
 
- 				*m += 2;
 
- 			    }
 
- 			}
 
- 		    } else {
 
- 			if (select[*n]) {
 
- 			    ++(*m);
 
- 			}
 
- 		    }
 
- 		}
 
- /* L10: */
 
- 	    }
 
- 	} else {
 
- 	    *m = *n;
 
- 	}
 
- 	if (*mm < *m) {
 
- 	    *info = -13;
 
- 	} else if (*ldwork < 1 || wantsp && *ldwork < *n) {
 
- 	    *info = -16;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DTRSNA", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	if (somcon) {
 
- 	    if (! select[1]) {
 
- 		return 0;
 
- 	    }
 
- 	}
 
- 	if (wants) {
 
- 	    s[1] = 1.;
 
- 	}
 
- 	if (wantsp) {
 
- 	    sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1));
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = _starpu_dlamch_("P");
 
-     smlnum = _starpu_dlamch_("S") / eps;
 
-     bignum = 1. / smlnum;
 
-     _starpu_dlabad_(&smlnum, &bignum);
 
-     ks = 0;
 
-     pair = FALSE_;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- /*        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
 
- 	if (pair) {
 
- 	    pair = FALSE_;
 
- 	    goto L60;
 
- 	} else {
 
- 	    if (k < *n) {
 
- 		pair = t[k + 1 + k * t_dim1] != 0.;
 
- 	    }
 
- 	}
 
- /*        Determine whether condition numbers are required for the k-th */
 
- /*        eigenpair. */
 
- 	if (somcon) {
 
- 	    if (pair) {
 
- 		if (! select[k] && ! select[k + 1]) {
 
- 		    goto L60;
 
- 		}
 
- 	    } else {
 
- 		if (! select[k]) {
 
- 		    goto L60;
 
- 		}
 
- 	    }
 
- 	}
 
- 	++ks;
 
- 	if (wants) {
 
- /*           Compute the reciprocal condition number of the k-th */
 
- /*           eigenvalue. */
 
- 	    if (! pair) {
 
- /*              Real eigenvalue. */
 
- 		prod = _starpu_ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 
 
- 			vl_dim1 + 1], &c__1);
 
- 		rnrm = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
 
- 		lnrm = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
 
- 		s[ks] = abs(prod) / (rnrm * lnrm);
 
- 	    } else {
 
- /*              Complex eigenvalue. */
 
- 		prod1 = _starpu_ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 
 
- 			vl_dim1 + 1], &c__1);
 
- 		prod1 += _starpu_ddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks 
 
- 			+ 1) * vl_dim1 + 1], &c__1);
 
- 		prod2 = _starpu_ddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) * 
 
- 			vr_dim1 + 1], &c__1);
 
- 		prod2 -= _starpu_ddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
 
- 			 vr_dim1 + 1], &c__1);
 
- 		d__1 = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
 
- 		d__2 = _starpu_dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
 
- 		rnrm = _starpu_dlapy2_(&d__1, &d__2);
 
- 		d__1 = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
 
- 		d__2 = _starpu_dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
 
- 		lnrm = _starpu_dlapy2_(&d__1, &d__2);
 
- 		cond = _starpu_dlapy2_(&prod1, &prod2) / (rnrm * lnrm);
 
- 		s[ks] = cond;
 
- 		s[ks + 1] = cond;
 
- 	    }
 
- 	}
 
- 	if (wantsp) {
 
- /*           Estimate the reciprocal condition number of the k-th */
 
- /*           eigenvector. */
 
- /*           Copy the matrix T to the array WORK and swap the diagonal */
 
- /*           block beginning at T(k,k) to the (1,1) position. */
 
- 	    _starpu_dlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset], 
 
- 		    ldwork);
 
- 	    ifst = k;
 
- 	    ilst = 1;
 
- 	    _starpu_dtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
 
- 		    ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
 
- 	    if (ierr == 1 || ierr == 2) {
 
- /*              Could not swap because blocks not well separated */
 
- 		scale = 1.;
 
- 		est = bignum;
 
- 	    } else {
 
- /*              Reordering successful */
 
- 		if (work[work_dim1 + 2] == 0.) {
 
- /*                 Form C = T22 - lambda*I in WORK(2:N,2:N). */
 
- 		    i__2 = *n;
 
- 		    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 			work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
 
- /* L20: */
 
- 		    }
 
- 		    n2 = 1;
 
- 		    nn = *n - 1;
 
- 		} else {
 
- /*                 Triangularize the 2 by 2 block by unitary */
 
- /*                 transformation U = [  cs   i*ss ] */
 
- /*                                    [ i*ss   cs  ]. */
 
- /*                 such that the (1,1) position of WORK is complex */
 
- /*                 eigenvalue lambda with positive imaginary part. (2,2) */
 
- /*                 position of WORK is the complex eigenvalue lambda */
 
- /*                 with negative imaginary  part. */
 
- 		    mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1))) 
 
- 			    * sqrt((d__2 = work[work_dim1 + 2], abs(d__2)));
 
- 		    delta = _starpu_dlapy2_(&mu, &work[work_dim1 + 2]);
 
- 		    cs = mu / delta;
 
- 		    sn = -work[work_dim1 + 2] / delta;
 
- /*                 Form */
 
- /*                 C' = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
 
- /*                                        [   mu                     ] */
 
- /*                                        [         ..               ] */
 
- /*                                        [             ..           ] */
 
- /*                                        [                  mu      ] */
 
- /*                 where C' is conjugate transpose of complex matrix C, */
 
- /*                 and RWORK is stored starting in the N+1-st column of */
 
- /*                 WORK. */
 
- 		    i__2 = *n;
 
- 		    for (j = 3; j <= i__2; ++j) {
 
- 			work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
 
- 				;
 
- 			work[j + j * work_dim1] -= work[work_dim1 + 1];
 
- /* L30: */
 
- 		    }
 
- 		    work[(work_dim1 << 1) + 2] = 0.;
 
- 		    work[(*n + 1) * work_dim1 + 1] = mu * 2.;
 
- 		    i__2 = *n - 1;
 
- 		    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 			work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
 
- 				 * work_dim1 + 1];
 
- /* L40: */
 
- 		    }
 
- 		    n2 = 2;
 
- 		    nn = *n - 1 << 1;
 
- 		}
 
- /*              Estimate norm(inv(C')) */
 
- 		est = 0.;
 
- 		kase = 0;
 
- L50:
 
- 		_starpu_dlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
 
- 			 work_dim1 + 1], &iwork[1], &est, &kase, isave);
 
- 		if (kase != 0) {
 
- 		    if (kase == 1) {
 
- 			if (n2 == 1) {
 
- /*                       Real eigenvalue: solve C'*x = scale*c. */
 
- 			    i__2 = *n - 1;
 
- 			    _starpu_dlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1 
 
- 				    << 1) + 2], ldwork, dummy, &dumm, &scale, 
 
- 				    &work[(*n + 4) * work_dim1 + 1], &work[(*
 
- 				    n + 6) * work_dim1 + 1], &ierr);
 
- 			} else {
 
- /*                       Complex eigenvalue: solve */
 
- /*                       C'*(p+iq) = scale*(c+id) in real arithmetic. */
 
- 			    i__2 = *n - 1;
 
- 			    _starpu_dlaqtr_(&c_true, &c_false, &i__2, &work[(
 
- 				    work_dim1 << 1) + 2], ldwork, &work[(*n + 
 
- 				    1) * work_dim1 + 1], &mu, &scale, &work[(*
 
- 				    n + 4) * work_dim1 + 1], &work[(*n + 6) * 
 
- 				    work_dim1 + 1], &ierr);
 
- 			}
 
- 		    } else {
 
- 			if (n2 == 1) {
 
- /*                       Real eigenvalue: solve C*x = scale*c. */
 
- 			    i__2 = *n - 1;
 
- 			    _starpu_dlaqtr_(&c_false, &c_true, &i__2, &work[(
 
- 				    work_dim1 << 1) + 2], ldwork, dummy, &
 
- 				    dumm, &scale, &work[(*n + 4) * work_dim1 
 
- 				    + 1], &work[(*n + 6) * work_dim1 + 1], &
 
- 				    ierr);
 
- 			} else {
 
- /*                       Complex eigenvalue: solve */
 
- /*                       C*(p+iq) = scale*(c+id) in real arithmetic. */
 
- 			    i__2 = *n - 1;
 
- 			    _starpu_dlaqtr_(&c_false, &c_false, &i__2, &work[(
 
- 				    work_dim1 << 1) + 2], ldwork, &work[(*n + 
 
- 				    1) * work_dim1 + 1], &mu, &scale, &work[(*
 
- 				    n + 4) * work_dim1 + 1], &work[(*n + 6) * 
 
- 				    work_dim1 + 1], &ierr);
 
- 			}
 
- 		    }
 
- 		    goto L50;
 
- 		}
 
- 	    }
 
- 	    sep[ks] = scale / max(est,smlnum);
 
- 	    if (pair) {
 
- 		sep[ks + 1] = sep[ks];
 
- 	    }
 
- 	}
 
- 	if (pair) {
 
- 	    ++ks;
 
- 	}
 
- L60:
 
- 	;
 
-     }
 
-     return 0;
 
- /*     End of DTRSNA */
 
- } /* _starpu_dtrsna_ */
 
 
  |