| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 | 
							- /* dspsvx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dspsvx_(char *fact, char *uplo, integer *n, integer *
 
- 	nrhs, doublereal *ap, doublereal *afp, integer *ipiv, doublereal *b, 
 
- 	integer *ldb, doublereal *x, integer *ldx, doublereal *rcond, 
 
- 	doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, x_dim1, x_offset, i__1;
 
-     /* Local variables */
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal anorm;
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     logical nofact;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *);
 
-     extern doublereal _starpu_dlansp_(char *, char *, integer *, doublereal *, 
 
- 	    doublereal *);
 
-     extern /* Subroutine */ int _starpu_dspcon_(char *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	    integer *), _starpu_dsprfs_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *), _starpu_dsptrf_(char *, integer *, 
 
- 	    doublereal *, integer *, integer *), _starpu_dsptrs_(char *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or */
 
- /*  A = L*D*L**T to compute the solution to a real system of linear */
 
- /*  equations A * X = B, where A is an N-by-N symmetric matrix stored */
 
- /*  in packed format and X and B are N-by-NRHS matrices. */
 
- /*  Error bounds on the solution and a condition estimate are also */
 
- /*  provided. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  The following steps are performed: */
 
- /*  1. If FACT = 'N', the diagonal pivoting method is used to factor A as */
 
- /*        A = U * D * U**T,  if UPLO = 'U', or */
 
- /*        A = L * D * L**T,  if UPLO = 'L', */
 
- /*     where U (or L) is a product of permutation and unit upper (lower) */
 
- /*     triangular matrices and D is symmetric and block diagonal with */
 
- /*     1-by-1 and 2-by-2 diagonal blocks. */
 
- /*  2. If some D(i,i)=0, so that D is exactly singular, then the routine */
 
- /*     returns with INFO = i. Otherwise, the factored form of A is used */
 
- /*     to estimate the condition number of the matrix A.  If the */
 
- /*     reciprocal of the condition number is less than machine precision, */
 
- /*     INFO = N+1 is returned as a warning, but the routine still goes on */
 
- /*     to solve for X and compute error bounds as described below. */
 
- /*  3. The system of equations is solved for X using the factored form */
 
- /*     of A. */
 
- /*  4. Iterative refinement is applied to improve the computed solution */
 
- /*     matrix and calculate error bounds and backward error estimates */
 
- /*     for it. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  FACT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the factored form of A has been */
 
- /*          supplied on entry. */
 
- /*          = 'F':  On entry, AFP and IPIV contain the factored form of */
 
- /*                  A.  AP, AFP and IPIV will not be modified. */
 
- /*          = 'N':  The matrix A will be copied to AFP and factored. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X.  NRHS >= 0. */
 
- /*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          The upper or lower triangle of the symmetric matrix A, packed */
 
- /*          columnwise in a linear array.  The j-th column of A is stored */
 
- /*          in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          See below for further details. */
 
- /*  AFP     (input or output) DOUBLE PRECISION array, dimension */
 
- /*                            (N*(N+1)/2) */
 
- /*          If FACT = 'F', then AFP is an input argument and on entry */
 
- /*          contains the block diagonal matrix D and the multipliers used */
 
- /*          to obtain the factor U or L from the factorization */
 
- /*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as */
 
- /*          a packed triangular matrix in the same storage format as A. */
 
- /*          If FACT = 'N', then AFP is an output argument and on exit */
 
- /*          contains the block diagonal matrix D and the multipliers used */
 
- /*          to obtain the factor U or L from the factorization */
 
- /*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as */
 
- /*          a packed triangular matrix in the same storage format as A. */
 
- /*  IPIV    (input or output) INTEGER array, dimension (N) */
 
- /*          If FACT = 'F', then IPIV is an input argument and on entry */
 
- /*          contains details of the interchanges and the block structure */
 
- /*          of D, as determined by DSPTRF. */
 
- /*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
 
- /*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
 
- /*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
 
- /*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
 
- /*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
 
- /*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
 
- /*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 
- /*          If FACT = 'N', then IPIV is an output argument and on exit */
 
- /*          contains details of the interchanges and the block structure */
 
- /*          of D, as determined by DSPTRF. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          The N-by-NRHS right hand side matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The estimate of the reciprocal condition number of the matrix */
 
- /*          A.  If RCOND is less than the machine precision (in */
 
- /*          particular, if RCOND = 0), the matrix is singular to working */
 
- /*          precision.  This condition is indicated by a return code of */
 
- /*          INFO > 0. */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The estimated forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j).  The estimate is as reliable as */
 
- /*          the estimate for RCOND, and is almost always a slight */
 
- /*          overestimate of the true error. */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in */
 
- /*          any element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, and i is */
 
- /*                <= N:  D(i,i) is exactly zero.  The factorization */
 
- /*                       has been completed but the factor D is exactly */
 
- /*                       singular, so the solution and error bounds could */
 
- /*                       not be computed. RCOND = 0 is returned. */
 
- /*                = N+1: D is nonsingular, but RCOND is less than machine */
 
- /*                       precision, meaning that the matrix is singular */
 
- /*                       to working precision.  Nevertheless, the */
 
- /*                       solution and error bounds are computed because */
 
- /*                       there are a number of situations where the */
 
- /*                       computed solution can be more accurate than the */
 
- /*                       value of RCOND would suggest. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The packed storage scheme is illustrated by the following example */
 
- /*  when N = 4, UPLO = 'U': */
 
- /*  Two-dimensional storage of the symmetric matrix A: */
 
- /*     a11 a12 a13 a14 */
 
- /*         a22 a23 a24 */
 
- /*             a33 a34     (aij = aji) */
 
- /*                 a44 */
 
- /*  Packed storage of the upper triangle of A: */
 
- /*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --afp;
 
-     --ipiv;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nofact = _starpu_lsame_(fact, "N");
 
-     if (! nofact && ! _starpu_lsame_(fact, "F")) {
 
- 	*info = -1;
 
-     } else if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, 
 
- 	    "L")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -9;
 
-     } else if (*ldx < max(1,*n)) {
 
- 	*info = -11;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSPSVX", &i__1);
 
- 	return 0;
 
-     }
 
-     if (nofact) {
 
- /*        Compute the factorization A = U*D*U' or A = L*D*L'. */
 
- 	i__1 = *n * (*n + 1) / 2;
 
- 	_starpu_dcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
 
- 	_starpu_dsptrf_(uplo, n, &afp[1], &ipiv[1], info);
 
- /*        Return if INFO is non-zero. */
 
- 	if (*info > 0) {
 
- 	    *rcond = 0.;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Compute the norm of the matrix A. */
 
-     anorm = _starpu_dlansp_("I", uplo, n, &ap[1], &work[1]);
 
- /*     Compute the reciprocal of the condition number of A. */
 
-     _starpu_dspcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], &iwork[1], 
 
- 	    info);
 
- /*     Compute the solution vectors X. */
 
-     _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 
-     _starpu_dsptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info);
 
- /*     Use iterative refinement to improve the computed solutions and */
 
- /*     compute error bounds and backward error estimates for them. */
 
-     _starpu_dsprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[
 
- 	    x_offset], ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);
 
- /*     Set INFO = N+1 if the matrix is singular to working precision. */
 
-     if (*rcond < _starpu_dlamch_("Epsilon")) {
 
- 	*info = *n + 1;
 
-     }
 
-     return 0;
 
- /*     End of DSPSVX */
 
- } /* _starpu_dspsvx_ */
 
 
  |