| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 | 
							- /* dlarrj.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlarrj_(integer *n, doublereal *d__, doublereal *e2, 
 
- 	integer *ifirst, integer *ilast, doublereal *rtol, integer *offset, 
 
- 	doublereal *w, doublereal *werr, doublereal *work, integer *iwork, 
 
- 	doublereal *pivmin, doublereal *spdiam, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double log(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k, p;
 
-     doublereal s;
 
-     integer i1, i2, ii;
 
-     doublereal fac, mid;
 
-     integer cnt;
 
-     doublereal tmp, left;
 
-     integer iter, nint, prev, next, savi1;
 
-     doublereal right, width, dplus;
 
-     integer olnint, maxitr;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  Given the initial eigenvalue approximations of T, DLARRJ */
 
- /*  does  bisection to refine the eigenvalues of T, */
 
- /*  W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */
 
- /*  guesses for these eigenvalues are input in W, the corresponding estimate */
 
- /*  of the error in these guesses in WERR. During bisection, intervals */
 
- /*  [left, right] are maintained by storing their mid-points and */
 
- /*  semi-widths in the arrays W and WERR respectively. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The N diagonal elements of T. */
 
- /*  E2      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The Squares of the (N-1) subdiagonal elements of T. */
 
- /*  IFIRST  (input) INTEGER */
 
- /*          The index of the first eigenvalue to be computed. */
 
- /*  ILAST   (input) INTEGER */
 
- /*          The index of the last eigenvalue to be computed. */
 
- /*  RTOL   (input) DOUBLE PRECISION */
 
- /*          Tolerance for the convergence of the bisection intervals. */
 
- /*          An interval [LEFT,RIGHT] has converged if */
 
- /*          RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|). */
 
- /*  OFFSET  (input) INTEGER */
 
- /*          Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET */
 
- /*          through ILAST-OFFSET elements of these arrays are to be used. */
 
- /*  W       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */
 
- /*          estimates of the eigenvalues of L D L^T indexed IFIRST through */
 
- /*          ILAST. */
 
- /*          On output, these estimates are refined. */
 
- /*  WERR    (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */
 
- /*          the errors in the estimates of the corresponding elements in W. */
 
- /*          On output, these errors are refined. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) */
 
- /*          Workspace. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (2*N) */
 
- /*          Workspace. */
 
- /*  PIVMIN  (input) DOUBLE PRECISION */
 
- /*          The minimum pivot in the Sturm sequence for T. */
 
- /*  SPDIAM  (input) DOUBLE PRECISION */
 
- /*          The spectral diameter of T. */
 
- /*  INFO    (output) INTEGER */
 
- /*          Error flag. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Beresford Parlett, University of California, Berkeley, USA */
 
- /*     Jim Demmel, University of California, Berkeley, USA */
 
- /*     Inderjit Dhillon, University of Texas, Austin, USA */
 
- /*     Osni Marques, LBNL/NERSC, USA */
 
- /*     Christof Voemel, University of California, Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --iwork;
 
-     --work;
 
-     --werr;
 
-     --w;
 
-     --e2;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.)) + 
 
- 	    2;
 
- /*     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */
 
- /*     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */
 
- /*     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */
 
- /*     for an unconverged interval is set to the index of the next unconverged */
 
- /*     interval, and is -1 or 0 for a converged interval. Thus a linked */
 
- /*     list of unconverged intervals is set up. */
 
-     i1 = *ifirst;
 
-     i2 = *ilast;
 
- /*     The number of unconverged intervals */
 
-     nint = 0;
 
- /*     The last unconverged interval found */
 
-     prev = 0;
 
-     i__1 = i2;
 
-     for (i__ = i1; i__ <= i__1; ++i__) {
 
- 	k = i__ << 1;
 
- 	ii = i__ - *offset;
 
- 	left = w[ii] - werr[ii];
 
- 	mid = w[ii];
 
- 	right = w[ii] + werr[ii];
 
- 	width = right - mid;
 
- /* Computing MAX */
 
- 	d__1 = abs(left), d__2 = abs(right);
 
- 	tmp = max(d__1,d__2);
 
- /*        The following test prevents the test of converged intervals */
 
- 	if (width < *rtol * tmp) {
 
- /*           This interval has already converged and does not need refinement. */
 
- /*           (Note that the gaps might change through refining the */
 
- /*            eigenvalues, however, they can only get bigger.) */
 
- /*           Remove it from the list. */
 
- 	    iwork[k - 1] = -1;
 
- /*           Make sure that I1 always points to the first unconverged interval */
 
- 	    if (i__ == i1 && i__ < i2) {
 
- 		i1 = i__ + 1;
 
- 	    }
 
- 	    if (prev >= i1 && i__ <= i2) {
 
- 		iwork[(prev << 1) - 1] = i__ + 1;
 
- 	    }
 
- 	} else {
 
- /*           unconverged interval found */
 
- 	    prev = i__;
 
- /*           Make sure that [LEFT,RIGHT] contains the desired eigenvalue */
 
- /*           Do while( CNT(LEFT).GT.I-1 ) */
 
- 	    fac = 1.;
 
- L20:
 
- 	    cnt = 0;
 
- 	    s = left;
 
- 	    dplus = d__[1] - s;
 
- 	    if (dplus < 0.) {
 
- 		++cnt;
 
- 	    }
 
- 	    i__2 = *n;
 
- 	    for (j = 2; j <= i__2; ++j) {
 
- 		dplus = d__[j] - s - e2[j - 1] / dplus;
 
- 		if (dplus < 0.) {
 
- 		    ++cnt;
 
- 		}
 
- /* L30: */
 
- 	    }
 
- 	    if (cnt > i__ - 1) {
 
- 		left -= werr[ii] * fac;
 
- 		fac *= 2.;
 
- 		goto L20;
 
- 	    }
 
- /*           Do while( CNT(RIGHT).LT.I ) */
 
- 	    fac = 1.;
 
- L50:
 
- 	    cnt = 0;
 
- 	    s = right;
 
- 	    dplus = d__[1] - s;
 
- 	    if (dplus < 0.) {
 
- 		++cnt;
 
- 	    }
 
- 	    i__2 = *n;
 
- 	    for (j = 2; j <= i__2; ++j) {
 
- 		dplus = d__[j] - s - e2[j - 1] / dplus;
 
- 		if (dplus < 0.) {
 
- 		    ++cnt;
 
- 		}
 
- /* L60: */
 
- 	    }
 
- 	    if (cnt < i__) {
 
- 		right += werr[ii] * fac;
 
- 		fac *= 2.;
 
- 		goto L50;
 
- 	    }
 
- 	    ++nint;
 
- 	    iwork[k - 1] = i__ + 1;
 
- 	    iwork[k] = cnt;
 
- 	}
 
- 	work[k - 1] = left;
 
- 	work[k] = right;
 
- /* L75: */
 
-     }
 
-     savi1 = i1;
 
- /*     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */
 
- /*     and while (ITER.LT.MAXITR) */
 
-     iter = 0;
 
- L80:
 
-     prev = i1 - 1;
 
-     i__ = i1;
 
-     olnint = nint;
 
-     i__1 = olnint;
 
-     for (p = 1; p <= i__1; ++p) {
 
- 	k = i__ << 1;
 
- 	ii = i__ - *offset;
 
- 	next = iwork[k - 1];
 
- 	left = work[k - 1];
 
- 	right = work[k];
 
- 	mid = (left + right) * .5;
 
- /*        semiwidth of interval */
 
- 	width = right - mid;
 
- /* Computing MAX */
 
- 	d__1 = abs(left), d__2 = abs(right);
 
- 	tmp = max(d__1,d__2);
 
- 	if (width < *rtol * tmp || iter == maxitr) {
 
- /*           reduce number of unconverged intervals */
 
- 	    --nint;
 
- /*           Mark interval as converged. */
 
- 	    iwork[k - 1] = 0;
 
- 	    if (i1 == i__) {
 
- 		i1 = next;
 
- 	    } else {
 
- /*              Prev holds the last unconverged interval previously examined */
 
- 		if (prev >= i1) {
 
- 		    iwork[(prev << 1) - 1] = next;
 
- 		}
 
- 	    }
 
- 	    i__ = next;
 
- 	    goto L100;
 
- 	}
 
- 	prev = i__;
 
- /*        Perform one bisection step */
 
- 	cnt = 0;
 
- 	s = mid;
 
- 	dplus = d__[1] - s;
 
- 	if (dplus < 0.) {
 
- 	    ++cnt;
 
- 	}
 
- 	i__2 = *n;
 
- 	for (j = 2; j <= i__2; ++j) {
 
- 	    dplus = d__[j] - s - e2[j - 1] / dplus;
 
- 	    if (dplus < 0.) {
 
- 		++cnt;
 
- 	    }
 
- /* L90: */
 
- 	}
 
- 	if (cnt <= i__ - 1) {
 
- 	    work[k - 1] = mid;
 
- 	} else {
 
- 	    work[k] = mid;
 
- 	}
 
- 	i__ = next;
 
- L100:
 
- 	;
 
-     }
 
-     ++iter;
 
- /*     do another loop if there are still unconverged intervals */
 
- /*     However, in the last iteration, all intervals are accepted */
 
- /*     since this is the best we can do. */
 
-     if (nint > 0 && iter <= maxitr) {
 
- 	goto L80;
 
-     }
 
- /*     At this point, all the intervals have converged */
 
-     i__1 = *ilast;
 
-     for (i__ = savi1; i__ <= i__1; ++i__) {
 
- 	k = i__ << 1;
 
- 	ii = i__ - *offset;
 
- /*        All intervals marked by '0' have been refined. */
 
- 	if (iwork[k - 1] == 0) {
 
- 	    w[ii] = (work[k - 1] + work[k]) * .5;
 
- 	    werr[ii] = work[k] - w[ii];
 
- 	}
 
- /* L110: */
 
-     }
 
-     return 0;
 
- /*     End of DLARRJ */
 
- } /* _starpu_dlarrj_ */
 
 
  |