| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533 | 
							- /* dlaed2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b3 = -1.;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dlaed2_(integer *k, integer *n, integer *n1, doublereal *
 
- 	d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, 
 
- 	doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2, 
 
- 	integer *indx, integer *indxc, integer *indxp, integer *coltyp, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer q_dim1, q_offset, i__1, i__2;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal c__;
 
-     integer i__, j;
 
-     doublereal s, t;
 
-     integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1;
 
-     doublereal eps, tau, tol;
 
-     integer psm[4], imax, jmax;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     integer ctot[4];
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *), _starpu_dcopy_(integer *, doublereal *, integer *, doublereal 
 
- 	    *, integer *);
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *), _starpu_dlacpy_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAED2 merges the two sets of eigenvalues together into a single */
 
- /*  sorted set.  Then it tries to deflate the size of the problem. */
 
- /*  There are two ways in which deflation can occur:  when two or more */
 
- /*  eigenvalues are close together or if there is a tiny entry in the */
 
- /*  Z vector.  For each such occurrence the order of the related secular */
 
- /*  equation problem is reduced by one. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  K      (output) INTEGER */
 
- /*         The number of non-deflated eigenvalues, and the order of the */
 
- /*         related secular equation. 0 <= K <=N. */
 
- /*  N      (input) INTEGER */
 
- /*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 
- /*  N1     (input) INTEGER */
 
- /*         The location of the last eigenvalue in the leading sub-matrix. */
 
- /*         min(1,N) <= N1 <= N/2. */
 
- /*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*         On entry, D contains the eigenvalues of the two submatrices to */
 
- /*         be combined. */
 
- /*         On exit, D contains the trailing (N-K) updated eigenvalues */
 
- /*         (those which were deflated) sorted into increasing order. */
 
- /*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
 
- /*         On entry, Q contains the eigenvectors of two submatrices in */
 
- /*         the two square blocks with corners at (1,1), (N1,N1) */
 
- /*         and (N1+1, N1+1), (N,N). */
 
- /*         On exit, Q contains the trailing (N-K) updated eigenvectors */
 
- /*         (those which were deflated) in its last N-K columns. */
 
- /*  LDQ    (input) INTEGER */
 
- /*         The leading dimension of the array Q.  LDQ >= max(1,N). */
 
- /*  INDXQ  (input/output) INTEGER array, dimension (N) */
 
- /*         The permutation which separately sorts the two sub-problems */
 
- /*         in D into ascending order.  Note that elements in the second */
 
- /*         half of this permutation must first have N1 added to their */
 
- /*         values. Destroyed on exit. */
 
- /*  RHO    (input/output) DOUBLE PRECISION */
 
- /*         On entry, the off-diagonal element associated with the rank-1 */
 
- /*         cut which originally split the two submatrices which are now */
 
- /*         being recombined. */
 
- /*         On exit, RHO has been modified to the value required by */
 
- /*         DLAED3. */
 
- /*  Z      (input) DOUBLE PRECISION array, dimension (N) */
 
- /*         On entry, Z contains the updating vector (the last */
 
- /*         row of the first sub-eigenvector matrix and the first row of */
 
- /*         the second sub-eigenvector matrix). */
 
- /*         On exit, the contents of Z have been destroyed by the updating */
 
- /*         process. */
 
- /*  DLAMDA (output) DOUBLE PRECISION array, dimension (N) */
 
- /*         A copy of the first K eigenvalues which will be used by */
 
- /*         DLAED3 to form the secular equation. */
 
- /*  W      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*         The first k values of the final deflation-altered z-vector */
 
- /*         which will be passed to DLAED3. */
 
- /*  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) */
 
- /*         A copy of the first K eigenvectors which will be used by */
 
- /*         DLAED3 in a matrix multiply (DGEMM) to solve for the new */
 
- /*         eigenvectors. */
 
- /*  INDX   (workspace) INTEGER array, dimension (N) */
 
- /*         The permutation used to sort the contents of DLAMDA into */
 
- /*         ascending order. */
 
- /*  INDXC  (output) INTEGER array, dimension (N) */
 
- /*         The permutation used to arrange the columns of the deflated */
 
- /*         Q matrix into three groups:  the first group contains non-zero */
 
- /*         elements only at and above N1, the second contains */
 
- /*         non-zero elements only below N1, and the third is dense. */
 
- /*  INDXP  (workspace) INTEGER array, dimension (N) */
 
- /*         The permutation used to place deflated values of D at the end */
 
- /*         of the array.  INDXP(1:K) points to the nondeflated D-values */
 
- /*         and INDXP(K+1:N) points to the deflated eigenvalues. */
 
- /*  COLTYP (workspace/output) INTEGER array, dimension (N) */
 
- /*         During execution, a label which will indicate which of the */
 
- /*         following types a column in the Q2 matrix is: */
 
- /*         1 : non-zero in the upper half only; */
 
- /*         2 : dense; */
 
- /*         3 : non-zero in the lower half only; */
 
- /*         4 : deflated. */
 
- /*         On exit, COLTYP(i) is the number of columns of type i, */
 
- /*         for i=1 to 4 only. */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  Modified by Francoise Tisseur, University of Tennessee. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --indxq;
 
-     --z__;
 
-     --dlamda;
 
-     --w;
 
-     --q2;
 
-     --indx;
 
-     --indxc;
 
-     --indxp;
 
-     --coltyp;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*ldq < max(1,*n)) {
 
- 	*info = -6;
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MIN */
 
- 	i__1 = 1, i__2 = *n / 2;
 
- 	if (min(i__1,i__2) > *n1 || *n / 2 < *n1) {
 
- 	    *info = -3;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLAED2", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     n2 = *n - *n1;
 
-     n1p1 = *n1 + 1;
 
-     if (*rho < 0.) {
 
- 	_starpu_dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
 
-     }
 
- /*     Normalize z so that norm(z) = 1.  Since z is the concatenation of */
 
- /*     two normalized vectors, norm2(z) = sqrt(2). */
 
-     t = 1. / sqrt(2.);
 
-     _starpu_dscal_(n, &t, &z__[1], &c__1);
 
- /*     RHO = ABS( norm(z)**2 * RHO ) */
 
-     *rho = (d__1 = *rho * 2., abs(d__1));
 
- /*     Sort the eigenvalues into increasing order */
 
-     i__1 = *n;
 
-     for (i__ = n1p1; i__ <= i__1; ++i__) {
 
- 	indxq[i__] += *n1;
 
- /* L10: */
 
-     }
 
- /*     re-integrate the deflated parts from the last pass */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	dlamda[i__] = d__[indxq[i__]];
 
- /* L20: */
 
-     }
 
-     _starpu_dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	indx[i__] = indxq[indxc[i__]];
 
- /* L30: */
 
-     }
 
- /*     Calculate the allowable deflation tolerance */
 
-     imax = _starpu_idamax_(n, &z__[1], &c__1);
 
-     jmax = _starpu_idamax_(n, &d__[1], &c__1);
 
-     eps = _starpu_dlamch_("Epsilon");
 
- /* Computing MAX */
 
-     d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
 
- 	    ;
 
-     tol = eps * 8. * max(d__3,d__4);
 
- /*     If the rank-1 modifier is small enough, no more needs to be done */
 
- /*     except to reorganize Q so that its columns correspond with the */
 
- /*     elements in D. */
 
-     if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
 
- 	*k = 0;
 
- 	iq2 = 1;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__ = indx[j];
 
- 	    _starpu_dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
 
- 	    dlamda[j] = d__[i__];
 
- 	    iq2 += *n;
 
- /* L40: */
 
- 	}
 
- 	_starpu_dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
 
- 	_starpu_dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
 
- 	goto L190;
 
-     }
 
- /*     If there are multiple eigenvalues then the problem deflates.  Here */
 
- /*     the number of equal eigenvalues are found.  As each equal */
 
- /*     eigenvalue is found, an elementary reflector is computed to rotate */
 
- /*     the corresponding eigensubspace so that the corresponding */
 
- /*     components of Z are zero in this new basis. */
 
-     i__1 = *n1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	coltyp[i__] = 1;
 
- /* L50: */
 
-     }
 
-     i__1 = *n;
 
-     for (i__ = n1p1; i__ <= i__1; ++i__) {
 
- 	coltyp[i__] = 3;
 
- /* L60: */
 
-     }
 
-     *k = 0;
 
-     k2 = *n + 1;
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	nj = indx[j];
 
- 	if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
 
- /*           Deflate due to small z component. */
 
- 	    --k2;
 
- 	    coltyp[nj] = 4;
 
- 	    indxp[k2] = nj;
 
- 	    if (j == *n) {
 
- 		goto L100;
 
- 	    }
 
- 	} else {
 
- 	    pj = nj;
 
- 	    goto L80;
 
- 	}
 
- /* L70: */
 
-     }
 
- L80:
 
-     ++j;
 
-     nj = indx[j];
 
-     if (j > *n) {
 
- 	goto L100;
 
-     }
 
-     if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
 
- /*        Deflate due to small z component. */
 
- 	--k2;
 
- 	coltyp[nj] = 4;
 
- 	indxp[k2] = nj;
 
-     } else {
 
- /*        Check if eigenvalues are close enough to allow deflation. */
 
- 	s = z__[pj];
 
- 	c__ = z__[nj];
 
- /*        Find sqrt(a**2+b**2) without overflow or */
 
- /*        destructive underflow. */
 
- 	tau = _starpu_dlapy2_(&c__, &s);
 
- 	t = d__[nj] - d__[pj];
 
- 	c__ /= tau;
 
- 	s = -s / tau;
 
- 	if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
 
- /*           Deflation is possible. */
 
- 	    z__[nj] = tau;
 
- 	    z__[pj] = 0.;
 
- 	    if (coltyp[nj] != coltyp[pj]) {
 
- 		coltyp[nj] = 2;
 
- 	    }
 
- 	    coltyp[pj] = 4;
 
- 	    _starpu_drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
 
- 		    c__, &s);
 
- /* Computing 2nd power */
 
- 	    d__1 = c__;
 
- /* Computing 2nd power */
 
- 	    d__2 = s;
 
- 	    t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
 
- /* Computing 2nd power */
 
- 	    d__1 = s;
 
- /* Computing 2nd power */
 
- 	    d__2 = c__;
 
- 	    d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
 
- 	    d__[pj] = t;
 
- 	    --k2;
 
- 	    i__ = 1;
 
- L90:
 
- 	    if (k2 + i__ <= *n) {
 
- 		if (d__[pj] < d__[indxp[k2 + i__]]) {
 
- 		    indxp[k2 + i__ - 1] = indxp[k2 + i__];
 
- 		    indxp[k2 + i__] = pj;
 
- 		    ++i__;
 
- 		    goto L90;
 
- 		} else {
 
- 		    indxp[k2 + i__ - 1] = pj;
 
- 		}
 
- 	    } else {
 
- 		indxp[k2 + i__ - 1] = pj;
 
- 	    }
 
- 	    pj = nj;
 
- 	} else {
 
- 	    ++(*k);
 
- 	    dlamda[*k] = d__[pj];
 
- 	    w[*k] = z__[pj];
 
- 	    indxp[*k] = pj;
 
- 	    pj = nj;
 
- 	}
 
-     }
 
-     goto L80;
 
- L100:
 
- /*     Record the last eigenvalue. */
 
-     ++(*k);
 
-     dlamda[*k] = d__[pj];
 
-     w[*k] = z__[pj];
 
-     indxp[*k] = pj;
 
- /*     Count up the total number of the various types of columns, then */
 
- /*     form a permutation which positions the four column types into */
 
- /*     four uniform groups (although one or more of these groups may be */
 
- /*     empty). */
 
-     for (j = 1; j <= 4; ++j) {
 
- 	ctot[j - 1] = 0;
 
- /* L110: */
 
-     }
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	ct = coltyp[j];
 
- 	++ctot[ct - 1];
 
- /* L120: */
 
-     }
 
- /*     PSM(*) = Position in SubMatrix (of types 1 through 4) */
 
-     psm[0] = 1;
 
-     psm[1] = ctot[0] + 1;
 
-     psm[2] = psm[1] + ctot[1];
 
-     psm[3] = psm[2] + ctot[2];
 
-     *k = *n - ctot[3];
 
- /*     Fill out the INDXC array so that the permutation which it induces */
 
- /*     will place all type-1 columns first, all type-2 columns next, */
 
- /*     then all type-3's, and finally all type-4's. */
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	js = indxp[j];
 
- 	ct = coltyp[js];
 
- 	indx[psm[ct - 1]] = js;
 
- 	indxc[psm[ct - 1]] = j;
 
- 	++psm[ct - 1];
 
- /* L130: */
 
-     }
 
- /*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
 
- /*     and Q2 respectively.  The eigenvalues/vectors which were not */
 
- /*     deflated go into the first K slots of DLAMDA and Q2 respectively, */
 
- /*     while those which were deflated go into the last N - K slots. */
 
-     i__ = 1;
 
-     iq1 = 1;
 
-     iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
 
-     i__1 = ctot[0];
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	js = indx[i__];
 
- 	_starpu_dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
 
- 	z__[i__] = d__[js];
 
- 	++i__;
 
- 	iq1 += *n1;
 
- /* L140: */
 
-     }
 
-     i__1 = ctot[1];
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	js = indx[i__];
 
- 	_starpu_dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
 
- 	_starpu_dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
 
- 	z__[i__] = d__[js];
 
- 	++i__;
 
- 	iq1 += *n1;
 
- 	iq2 += n2;
 
- /* L150: */
 
-     }
 
-     i__1 = ctot[2];
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	js = indx[i__];
 
- 	_starpu_dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
 
- 	z__[i__] = d__[js];
 
- 	++i__;
 
- 	iq2 += n2;
 
- /* L160: */
 
-     }
 
-     iq1 = iq2;
 
-     i__1 = ctot[3];
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	js = indx[i__];
 
- 	_starpu_dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
 
- 	iq2 += *n;
 
- 	z__[i__] = d__[js];
 
- 	++i__;
 
- /* L170: */
 
-     }
 
- /*     The deflated eigenvalues and their corresponding vectors go back */
 
- /*     into the last N - K slots of D and Q respectively. */
 
-     _starpu_dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
 
-     i__1 = *n - *k;
 
-     _starpu_dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
 
- /*     Copy CTOT into COLTYP for referencing in DLAED3. */
 
-     for (j = 1; j <= 4; ++j) {
 
- 	coltyp[j] = ctot[j - 1];
 
- /* L180: */
 
-     }
 
- L190:
 
-     return 0;
 
- /*     End of DLAED2 */
 
- } /* _starpu_dlaed2_ */
 
 
  |