| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 | 
							- /* dggsvd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dggsvd_(char *jobu, char *jobv, char *jobq, integer *m, 
 
- 	integer *n, integer *p, integer *k, integer *l, doublereal *a, 
 
- 	integer *lda, doublereal *b, integer *ldb, doublereal *alpha, 
 
- 	doublereal *beta, doublereal *u, integer *ldu, doublereal *v, integer 
 
- 	*ldv, doublereal *q, integer *ldq, doublereal *work, integer *iwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1, 
 
- 	    u_offset, v_dim1, v_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal ulp;
 
-     integer ibnd;
 
-     doublereal tola;
 
-     integer isub;
 
-     doublereal tolb, unfl, temp, smax;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal anorm, bnorm;
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     logical wantq, wantu, wantv;
 
-     extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dtgsja_(char *, char *, char *, integer *, 
 
- 	    integer *, integer *, integer *, integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     integer ncycle;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dggsvp_(
 
- 	    char *, char *, char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGSVD computes the generalized singular value decomposition (GSVD) */
 
- /*  of an M-by-N real matrix A and P-by-N real matrix B: */
 
- /*      U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ) */
 
- /*  where U, V and Q are orthogonal matrices, and Z' is the transpose */
 
- /*  of Z.  Let K+L = the effective numerical rank of the matrix (A',B')', */
 
- /*  then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and */
 
- /*  D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the */
 
- /*  following structures, respectively: */
 
- /*  If M-K-L >= 0, */
 
- /*                      K  L */
 
- /*         D1 =     K ( I  0 ) */
 
- /*                  L ( 0  C ) */
 
- /*              M-K-L ( 0  0 ) */
 
- /*                    K  L */
 
- /*         D2 =   L ( 0  S ) */
 
- /*              P-L ( 0  0 ) */
 
- /*                  N-K-L  K    L */
 
- /*    ( 0 R ) = K (  0   R11  R12 ) */
 
- /*              L (  0    0   R22 ) */
 
- /*  where */
 
- /*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
 
- /*    S = diag( BETA(K+1),  ... , BETA(K+L) ), */
 
- /*    C**2 + S**2 = I. */
 
- /*    R is stored in A(1:K+L,N-K-L+1:N) on exit. */
 
- /*  If M-K-L < 0, */
 
- /*                    K M-K K+L-M */
 
- /*         D1 =   K ( I  0    0   ) */
 
- /*              M-K ( 0  C    0   ) */
 
- /*                      K M-K K+L-M */
 
- /*         D2 =   M-K ( 0  S    0  ) */
 
- /*              K+L-M ( 0  0    I  ) */
 
- /*                P-L ( 0  0    0  ) */
 
- /*                     N-K-L  K   M-K  K+L-M */
 
- /*    ( 0 R ) =     K ( 0    R11  R12  R13  ) */
 
- /*                M-K ( 0     0   R22  R23  ) */
 
- /*              K+L-M ( 0     0    0   R33  ) */
 
- /*  where */
 
- /*    C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
 
- /*    S = diag( BETA(K+1),  ... , BETA(M) ), */
 
- /*    C**2 + S**2 = I. */
 
- /*    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
 
- /*    ( 0  R22 R23 ) */
 
- /*    in B(M-K+1:L,N+M-K-L+1:N) on exit. */
 
- /*  The routine computes C, S, R, and optionally the orthogonal */
 
- /*  transformation matrices U, V and Q. */
 
- /*  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
 
- /*  A and B implicitly gives the SVD of A*inv(B): */
 
- /*                       A*inv(B) = U*(D1*inv(D2))*V'. */
 
- /*  If ( A',B')' has orthonormal columns, then the GSVD of A and B is */
 
- /*  also equal to the CS decomposition of A and B. Furthermore, the GSVD */
 
- /*  can be used to derive the solution of the eigenvalue problem: */
 
- /*                       A'*A x = lambda* B'*B x. */
 
- /*  In some literature, the GSVD of A and B is presented in the form */
 
- /*                   U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 ) */
 
- /*  where U and V are orthogonal and X is nonsingular, D1 and D2 are */
 
- /*  ``diagonal''.  The former GSVD form can be converted to the latter */
 
- /*  form by taking the nonsingular matrix X as */
 
- /*                       X = Q*( I   0    ) */
 
- /*                             ( 0 inv(R) ). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBU    (input) CHARACTER*1 */
 
- /*          = 'U':  Orthogonal matrix U is computed; */
 
- /*          = 'N':  U is not computed. */
 
- /*  JOBV    (input) CHARACTER*1 */
 
- /*          = 'V':  Orthogonal matrix V is computed; */
 
- /*          = 'N':  V is not computed. */
 
- /*  JOBQ    (input) CHARACTER*1 */
 
- /*          = 'Q':  Orthogonal matrix Q is computed; */
 
- /*          = 'N':  Q is not computed. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrices A and B.  N >= 0. */
 
- /*  P       (input) INTEGER */
 
- /*          The number of rows of the matrix B.  P >= 0. */
 
- /*  K       (output) INTEGER */
 
- /*  L       (output) INTEGER */
 
- /*          On exit, K and L specify the dimension of the subblocks */
 
- /*          described in the Purpose section. */
 
- /*          K + L = effective numerical rank of (A',B')'. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, A contains the triangular matrix R, or part of R. */
 
- /*          See Purpose for details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,M). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
 
- /*          On entry, the P-by-N matrix B. */
 
- /*          On exit, B contains the triangular matrix R if M-K-L < 0. */
 
- /*          See Purpose for details. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,P). */
 
- /*  ALPHA   (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, ALPHA and BETA contain the generalized singular */
 
- /*          value pairs of A and B; */
 
- /*            ALPHA(1:K) = 1, */
 
- /*            BETA(1:K)  = 0, */
 
- /*          and if M-K-L >= 0, */
 
- /*            ALPHA(K+1:K+L) = C, */
 
- /*            BETA(K+1:K+L)  = S, */
 
- /*          or if M-K-L < 0, */
 
- /*            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
 
- /*            BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
 
- /*          and */
 
- /*            ALPHA(K+L+1:N) = 0 */
 
- /*            BETA(K+L+1:N)  = 0 */
 
- /*  U       (output) DOUBLE PRECISION array, dimension (LDU,M) */
 
- /*          If JOBU = 'U', U contains the M-by-M orthogonal matrix U. */
 
- /*          If JOBU = 'N', U is not referenced. */
 
- /*  LDU     (input) INTEGER */
 
- /*          The leading dimension of the array U. LDU >= max(1,M) if */
 
- /*          JOBU = 'U'; LDU >= 1 otherwise. */
 
- /*  V       (output) DOUBLE PRECISION array, dimension (LDV,P) */
 
- /*          If JOBV = 'V', V contains the P-by-P orthogonal matrix V. */
 
- /*          If JOBV = 'N', V is not referenced. */
 
- /*  LDV     (input) INTEGER */
 
- /*          The leading dimension of the array V. LDV >= max(1,P) if */
 
- /*          JOBV = 'V'; LDV >= 1 otherwise. */
 
- /*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. */
 
- /*          If JOBQ = 'N', Q is not referenced. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q. LDQ >= max(1,N) if */
 
- /*          JOBQ = 'Q'; LDQ >= 1 otherwise. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, */
 
- /*                      dimension (max(3*N,M,P)+N) */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (N) */
 
- /*          On exit, IWORK stores the sorting information. More */
 
- /*          precisely, the following loop will sort ALPHA */
 
- /*             for I = K+1, min(M,K+L) */
 
- /*                 swap ALPHA(I) and ALPHA(IWORK(I)) */
 
- /*             endfor */
 
- /*          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = 1, the Jacobi-type procedure failed to */
 
- /*                converge.  For further details, see subroutine DTGSJA. */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  TOLA    DOUBLE PRECISION */
 
- /*  TOLB    DOUBLE PRECISION */
 
- /*          TOLA and TOLB are the thresholds to determine the effective */
 
- /*          rank of (A',B')'. Generally, they are set to */
 
- /*                   TOLA = MAX(M,N)*norm(A)*MAZHEPS, */
 
- /*                   TOLB = MAX(P,N)*norm(B)*MAZHEPS. */
 
- /*          The size of TOLA and TOLB may affect the size of backward */
 
- /*          errors of the decomposition. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  2-96 Based on modifications by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alpha;
 
-     --beta;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     v_dim1 = *ldv;
 
-     v_offset = 1 + v_dim1;
 
-     v -= v_offset;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantu = _starpu_lsame_(jobu, "U");
 
-     wantv = _starpu_lsame_(jobv, "V");
 
-     wantq = _starpu_lsame_(jobq, "Q");
 
-     *info = 0;
 
-     if (! (wantu || _starpu_lsame_(jobu, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (wantv || _starpu_lsame_(jobv, "N"))) {
 
- 	*info = -2;
 
-     } else if (! (wantq || _starpu_lsame_(jobq, "N"))) {
 
- 	*info = -3;
 
-     } else if (*m < 0) {
 
- 	*info = -4;
 
-     } else if (*n < 0) {
 
- 	*info = -5;
 
-     } else if (*p < 0) {
 
- 	*info = -6;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -10;
 
-     } else if (*ldb < max(1,*p)) {
 
- 	*info = -12;
 
-     } else if (*ldu < 1 || wantu && *ldu < *m) {
 
- 	*info = -16;
 
-     } else if (*ldv < 1 || wantv && *ldv < *p) {
 
- 	*info = -18;
 
-     } else if (*ldq < 1 || wantq && *ldq < *n) {
 
- 	*info = -20;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGGSVD", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Compute the Frobenius norm of matrices A and B */
 
-     anorm = _starpu_dlange_("1", m, n, &a[a_offset], lda, &work[1]);
 
-     bnorm = _starpu_dlange_("1", p, n, &b[b_offset], ldb, &work[1]);
 
- /*     Get machine precision and set up threshold for determining */
 
- /*     the effective numerical rank of the matrices A and B. */
 
-     ulp = _starpu_dlamch_("Precision");
 
-     unfl = _starpu_dlamch_("Safe Minimum");
 
-     tola = max(*m,*n) * max(anorm,unfl) * ulp;
 
-     tolb = max(*p,*n) * max(bnorm,unfl) * ulp;
 
- /*     Preprocessing */
 
-     _starpu_dggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &
 
- 	    tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
 
- 	    q_offset], ldq, &iwork[1], &work[1], &work[*n + 1], info);
 
- /*     Compute the GSVD of two upper "triangular" matrices */
 
-     _starpu_dtgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset], 
 
- 	    ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
 
- 	    v_offset], ldv, &q[q_offset], ldq, &work[1], &ncycle, info);
 
- /*     Sort the singular values and store the pivot indices in IWORK */
 
- /*     Copy ALPHA to WORK, then sort ALPHA in WORK */
 
-     _starpu_dcopy_(n, &alpha[1], &c__1, &work[1], &c__1);
 
- /* Computing MIN */
 
-     i__1 = *l, i__2 = *m - *k;
 
-     ibnd = min(i__1,i__2);
 
-     i__1 = ibnd;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*        Scan for largest ALPHA(K+I) */
 
- 	isub = i__;
 
- 	smax = work[*k + i__];
 
- 	i__2 = ibnd;
 
- 	for (j = i__ + 1; j <= i__2; ++j) {
 
- 	    temp = work[*k + j];
 
- 	    if (temp > smax) {
 
- 		isub = j;
 
- 		smax = temp;
 
- 	    }
 
- /* L10: */
 
- 	}
 
- 	if (isub != i__) {
 
- 	    work[*k + isub] = work[*k + i__];
 
- 	    work[*k + i__] = smax;
 
- 	    iwork[*k + i__] = *k + isub;
 
- 	} else {
 
- 	    iwork[*k + i__] = *k + i__;
 
- 	}
 
- /* L20: */
 
-     }
 
-     return 0;
 
- /*     End of DGGSVD */
 
- } /* _starpu_dggsvd_ */
 
 
  |