| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886 | 
							- /* dggevx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__0 = 0;
 
- static doublereal c_b59 = 0.;
 
- static doublereal c_b60 = 1.;
 
- /* Subroutine */ int _starpu_dggevx_(char *balanc, char *jobvl, char *jobvr, char *
 
- 	sense, integer *n, doublereal *a, integer *lda, doublereal *b, 
 
- 	integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
 
- 	beta, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, 
 
- 	integer *ilo, integer *ihi, doublereal *lscale, doublereal *rscale, 
 
- 	doublereal *abnrm, doublereal *bbnrm, doublereal *rconde, doublereal *
 
- 	rcondv, doublereal *work, integer *lwork, integer *iwork, logical *
 
- 	bwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 
- 	    vr_offset, i__1, i__2;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, m, jc, in, mm, jr;
 
-     doublereal eps;
 
-     logical ilv, pair;
 
-     doublereal anrm, bnrm;
 
-     integer ierr, itau;
 
-     doublereal temp;
 
-     logical ilvl, ilvr;
 
-     integer iwrk, iwrk1;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer icols;
 
-     logical noscl;
 
-     integer irows;
 
-     extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *), _starpu_dggbak_(
 
- 	    char *, char *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dggbal_(char *, integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     logical ilascl, ilbscl;
 
-     extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlaset_(char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *);
 
-     logical ldumma[1];
 
-     char chtemp[1];
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *), _starpu_dtgevc_(char *, char *, 
 
- 	    logical *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *);
 
-     integer ijobvl;
 
-     extern /* Subroutine */ int _starpu_dtgsna_(char *, char *, logical *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, integer *, doublereal *, integer *, integer *, integer 
 
- 	    *), _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ijobvr;
 
-     logical wantsb;
 
-     extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *);
 
-     doublereal anrmto;
 
-     logical wantse;
 
-     doublereal bnrmto;
 
-     extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer minwrk, maxwrk;
 
-     logical wantsn;
 
-     doublereal smlnum;
 
-     logical lquery, wantsv;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
 
- /*  the generalized eigenvalues, and optionally, the left and/or right */
 
- /*  generalized eigenvectors. */
 
- /*  Optionally also, it computes a balancing transformation to improve */
 
- /*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
 
- /*  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
 
- /*  the eigenvalues (RCONDE), and reciprocal condition numbers for the */
 
- /*  right eigenvectors (RCONDV). */
 
- /*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
 
- /*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
 
- /*  singular. It is usually represented as the pair (alpha,beta), as */
 
- /*  there is a reasonable interpretation for beta=0, and even for both */
 
- /*  being zero. */
 
- /*  The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
 
- /*  of (A,B) satisfies */
 
- /*                   A * v(j) = lambda(j) * B * v(j) . */
 
- /*  The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
 
- /*  of (A,B) satisfies */
 
- /*                   u(j)**H * A  = lambda(j) * u(j)**H * B. */
 
- /*  where u(j)**H is the conjugate-transpose of u(j). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  BALANC  (input) CHARACTER*1 */
 
- /*          Specifies the balance option to be performed. */
 
- /*          = 'N':  do not diagonally scale or permute; */
 
- /*          = 'P':  permute only; */
 
- /*          = 'S':  scale only; */
 
- /*          = 'B':  both permute and scale. */
 
- /*          Computed reciprocal condition numbers will be for the */
 
- /*          matrices after permuting and/or balancing. Permuting does */
 
- /*          not change condition numbers (in exact arithmetic), but */
 
- /*          balancing does. */
 
- /*  JOBVL   (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the left generalized eigenvectors; */
 
- /*          = 'V':  compute the left generalized eigenvectors. */
 
- /*  JOBVR   (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the right generalized eigenvectors; */
 
- /*          = 'V':  compute the right generalized eigenvectors. */
 
- /*  SENSE   (input) CHARACTER*1 */
 
- /*          Determines which reciprocal condition numbers are computed. */
 
- /*          = 'N': none are computed; */
 
- /*          = 'E': computed for eigenvalues only; */
 
- /*          = 'V': computed for eigenvectors only; */
 
- /*          = 'B': computed for eigenvalues and eigenvectors. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A, B, VL, and VR.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
 
- /*          On entry, the matrix A in the pair (A,B). */
 
- /*          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
 
- /*          or both, then A contains the first part of the real Schur */
 
- /*          form of the "balanced" versions of the input A and B. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of A.  LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
 
- /*          On entry, the matrix B in the pair (A,B). */
 
- /*          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
 
- /*          or both, then B contains the second part of the real Schur */
 
- /*          form of the "balanced" versions of the input A and B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of B.  LDB >= max(1,N). */
 
- /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
 
- /*          be the generalized eigenvalues.  If ALPHAI(j) is zero, then */
 
- /*          the j-th eigenvalue is real; if positive, then the j-th and */
 
- /*          (j+1)-st eigenvalues are a complex conjugate pair, with */
 
- /*          ALPHAI(j+1) negative. */
 
- /*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
 
- /*          may easily over- or underflow, and BETA(j) may even be zero. */
 
- /*          Thus, the user should avoid naively computing the ratio */
 
- /*          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
 
- /*          than and usually comparable with norm(A) in magnitude, and */
 
- /*          BETA always less than and usually comparable with norm(B). */
 
- /*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) */
 
- /*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
 
- /*          after another in the columns of VL, in the same order as */
 
- /*          their eigenvalues. If the j-th eigenvalue is real, then */
 
- /*          u(j) = VL(:,j), the j-th column of VL. If the j-th and */
 
- /*          (j+1)-th eigenvalues form a complex conjugate pair, then */
 
- /*          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
 
- /*          Each eigenvector will be scaled so the largest component have */
 
- /*          abs(real part) + abs(imag. part) = 1. */
 
- /*          Not referenced if JOBVL = 'N'. */
 
- /*  LDVL    (input) INTEGER */
 
- /*          The leading dimension of the matrix VL. LDVL >= 1, and */
 
- /*          if JOBVL = 'V', LDVL >= N. */
 
- /*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) */
 
- /*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
 
- /*          after another in the columns of VR, in the same order as */
 
- /*          their eigenvalues. If the j-th eigenvalue is real, then */
 
- /*          v(j) = VR(:,j), the j-th column of VR. If the j-th and */
 
- /*          (j+1)-th eigenvalues form a complex conjugate pair, then */
 
- /*          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
 
- /*          Each eigenvector will be scaled so the largest component have */
 
- /*          abs(real part) + abs(imag. part) = 1. */
 
- /*          Not referenced if JOBVR = 'N'. */
 
- /*  LDVR    (input) INTEGER */
 
- /*          The leading dimension of the matrix VR. LDVR >= 1, and */
 
- /*          if JOBVR = 'V', LDVR >= N. */
 
- /*  ILO     (output) INTEGER */
 
- /*  IHI     (output) INTEGER */
 
- /*          ILO and IHI are integer values such that on exit */
 
- /*          A(i,j) = 0 and B(i,j) = 0 if i > j and */
 
- /*          j = 1,...,ILO-1 or i = IHI+1,...,N. */
 
- /*          If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
 
- /*  LSCALE  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          Details of the permutations and scaling factors applied */
 
- /*          to the left side of A and B.  If PL(j) is the index of the */
 
- /*          row interchanged with row j, and DL(j) is the scaling */
 
- /*          factor applied to row j, then */
 
- /*            LSCALE(j) = PL(j)  for j = 1,...,ILO-1 */
 
- /*                      = DL(j)  for j = ILO,...,IHI */
 
- /*                      = PL(j)  for j = IHI+1,...,N. */
 
- /*          The order in which the interchanges are made is N to IHI+1, */
 
- /*          then 1 to ILO-1. */
 
- /*  RSCALE  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          Details of the permutations and scaling factors applied */
 
- /*          to the right side of A and B.  If PR(j) is the index of the */
 
- /*          column interchanged with column j, and DR(j) is the scaling */
 
- /*          factor applied to column j, then */
 
- /*            RSCALE(j) = PR(j)  for j = 1,...,ILO-1 */
 
- /*                      = DR(j)  for j = ILO,...,IHI */
 
- /*                      = PR(j)  for j = IHI+1,...,N */
 
- /*          The order in which the interchanges are made is N to IHI+1, */
 
- /*          then 1 to ILO-1. */
 
- /*  ABNRM   (output) DOUBLE PRECISION */
 
- /*          The one-norm of the balanced matrix A. */
 
- /*  BBNRM   (output) DOUBLE PRECISION */
 
- /*          The one-norm of the balanced matrix B. */
 
- /*  RCONDE  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If SENSE = 'E' or 'B', the reciprocal condition numbers of */
 
- /*          the eigenvalues, stored in consecutive elements of the array. */
 
- /*          For a complex conjugate pair of eigenvalues two consecutive */
 
- /*          elements of RCONDE are set to the same value. Thus RCONDE(j), */
 
- /*          RCONDV(j), and the j-th columns of VL and VR all correspond */
 
- /*          to the j-th eigenpair. */
 
- /*          If SENSE = 'N or 'V', RCONDE is not referenced. */
 
- /*  RCONDV  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If SENSE = 'V' or 'B', the estimated reciprocal condition */
 
- /*          numbers of the eigenvectors, stored in consecutive elements */
 
- /*          of the array. For a complex eigenvector two consecutive */
 
- /*          elements of RCONDV are set to the same value. If the */
 
- /*          eigenvalues cannot be reordered to compute RCONDV(j), */
 
- /*          RCONDV(j) is set to 0; this can only occur when the true */
 
- /*          value would be very small anyway. */
 
- /*          If SENSE = 'N' or 'E', RCONDV is not referenced. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >= max(1,2*N). */
 
- /*          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
 
- /*          LWORK >= max(1,6*N). */
 
- /*          If SENSE = 'E' or 'B', LWORK >= max(1,10*N). */
 
- /*          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N+6) */
 
- /*          If SENSE = 'E', IWORK is not referenced. */
 
- /*  BWORK   (workspace) LOGICAL array, dimension (N) */
 
- /*          If SENSE = 'N', BWORK is not referenced. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          = 1,...,N: */
 
- /*                The QZ iteration failed.  No eigenvectors have been */
 
- /*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
 
- /*                should be correct for j=INFO+1,...,N. */
 
- /*          > N:  =N+1: other than QZ iteration failed in DHGEQZ. */
 
- /*                =N+2: error return from DTGEVC. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Balancing a matrix pair (A,B) includes, first, permuting rows and */
 
- /*  columns to isolate eigenvalues, second, applying diagonal similarity */
 
- /*  transformation to the rows and columns to make the rows and columns */
 
- /*  as close in norm as possible. The computed reciprocal condition */
 
- /*  numbers correspond to the balanced matrix. Permuting rows and columns */
 
- /*  will not change the condition numbers (in exact arithmetic) but */
 
- /*  diagonal scaling will.  For further explanation of balancing, see */
 
- /*  section 4.11.1.2 of LAPACK Users' Guide. */
 
- /*  An approximate error bound on the chordal distance between the i-th */
 
- /*  computed generalized eigenvalue w and the corresponding exact */
 
- /*  eigenvalue lambda is */
 
- /*       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
 
- /*  An approximate error bound for the angle between the i-th computed */
 
- /*  eigenvector VL(i) or VR(i) is given by */
 
- /*       EPS * norm(ABNRM, BBNRM) / DIF(i). */
 
- /*  For further explanation of the reciprocal condition numbers RCONDE */
 
- /*  and RCONDV, see section 4.11 of LAPACK User's Guide. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alphar;
 
-     --alphai;
 
-     --beta;
 
-     vl_dim1 = *ldvl;
 
-     vl_offset = 1 + vl_dim1;
 
-     vl -= vl_offset;
 
-     vr_dim1 = *ldvr;
 
-     vr_offset = 1 + vr_dim1;
 
-     vr -= vr_offset;
 
-     --lscale;
 
-     --rscale;
 
-     --rconde;
 
-     --rcondv;
 
-     --work;
 
-     --iwork;
 
-     --bwork;
 
-     /* Function Body */
 
-     if (_starpu_lsame_(jobvl, "N")) {
 
- 	ijobvl = 1;
 
- 	ilvl = FALSE_;
 
-     } else if (_starpu_lsame_(jobvl, "V")) {
 
- 	ijobvl = 2;
 
- 	ilvl = TRUE_;
 
-     } else {
 
- 	ijobvl = -1;
 
- 	ilvl = FALSE_;
 
-     }
 
-     if (_starpu_lsame_(jobvr, "N")) {
 
- 	ijobvr = 1;
 
- 	ilvr = FALSE_;
 
-     } else if (_starpu_lsame_(jobvr, "V")) {
 
- 	ijobvr = 2;
 
- 	ilvr = TRUE_;
 
-     } else {
 
- 	ijobvr = -1;
 
- 	ilvr = FALSE_;
 
-     }
 
-     ilv = ilvl || ilvr;
 
-     noscl = _starpu_lsame_(balanc, "N") || _starpu_lsame_(balanc, "P");
 
-     wantsn = _starpu_lsame_(sense, "N");
 
-     wantse = _starpu_lsame_(sense, "E");
 
-     wantsv = _starpu_lsame_(sense, "V");
 
-     wantsb = _starpu_lsame_(sense, "B");
 
- /*     Test the input arguments */
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     if (! (_starpu_lsame_(balanc, "N") || _starpu_lsame_(balanc, "S") || _starpu_lsame_(balanc, "P") 
 
- 	    || _starpu_lsame_(balanc, "B"))) {
 
- 	*info = -1;
 
-     } else if (ijobvl <= 0) {
 
- 	*info = -2;
 
-     } else if (ijobvr <= 0) {
 
- 	*info = -3;
 
-     } else if (! (wantsn || wantse || wantsb || wantsv)) {
 
- 	*info = -4;
 
-     } else if (*n < 0) {
 
- 	*info = -5;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -9;
 
-     } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
 
- 	*info = -14;
 
-     } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
 
- 	*info = -16;
 
-     }
 
- /*     Compute workspace */
 
- /*      (Note: Comments in the code beginning "Workspace:" describe the */
 
- /*       minimal amount of workspace needed at that point in the code, */
 
- /*       as well as the preferred amount for good performance. */
 
- /*       NB refers to the optimal block size for the immediately */
 
- /*       following subroutine, as returned by ILAENV. The workspace is */
 
- /*       computed assuming ILO = 1 and IHI = N, the worst case.) */
 
-     if (*info == 0) {
 
- 	if (*n == 0) {
 
- 	    minwrk = 1;
 
- 	    maxwrk = 1;
 
- 	} else {
 
- 	    if (noscl && ! ilv) {
 
- 		minwrk = *n << 1;
 
- 	    } else {
 
- 		minwrk = *n * 6;
 
- 	    }
 
- 	    if (wantse || wantsb) {
 
- 		minwrk = *n * 10;
 
- 	    }
 
- 	    if (wantsv || wantsb) {
 
- /* Computing MAX */
 
- 		i__1 = minwrk, i__2 = (*n << 1) * (*n + 4) + 16;
 
- 		minwrk = max(i__1,i__2);
 
- 	    }
 
- 	    maxwrk = minwrk;
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, &
 
- 		    c__1, n, &c__0);
 
- 	    maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DORMQR", " ", n, &
 
- 		    c__1, n, &c__0);
 
- 	    maxwrk = max(i__1,i__2);
 
- 	    if (ilvl) {
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DORGQR", 
 
- 			" ", n, &c__1, n, &c__0);
 
- 		maxwrk = max(i__1,i__2);
 
- 	    }
 
- 	}
 
- 	work[1] = (doublereal) maxwrk;
 
- 	if (*lwork < minwrk && ! lquery) {
 
- 	    *info = -26;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGGEVX", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = _starpu_dlamch_("P");
 
-     smlnum = _starpu_dlamch_("S");
 
-     bignum = 1. / smlnum;
 
-     _starpu_dlabad_(&smlnum, &bignum);
 
-     smlnum = sqrt(smlnum) / eps;
 
-     bignum = 1. / smlnum;
 
- /*     Scale A if max element outside range [SMLNUM,BIGNUM] */
 
-     anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);
 
-     ilascl = FALSE_;
 
-     if (anrm > 0. && anrm < smlnum) {
 
- 	anrmto = smlnum;
 
- 	ilascl = TRUE_;
 
-     } else if (anrm > bignum) {
 
- 	anrmto = bignum;
 
- 	ilascl = TRUE_;
 
-     }
 
-     if (ilascl) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 
- 		ierr);
 
-     }
 
- /*     Scale B if max element outside range [SMLNUM,BIGNUM] */
 
-     bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
 
-     ilbscl = FALSE_;
 
-     if (bnrm > 0. && bnrm < smlnum) {
 
- 	bnrmto = smlnum;
 
- 	ilbscl = TRUE_;
 
-     } else if (bnrm > bignum) {
 
- 	bnrmto = bignum;
 
- 	ilbscl = TRUE_;
 
-     }
 
-     if (ilbscl) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 
- 		ierr);
 
-     }
 
- /*     Permute and/or balance the matrix pair (A,B) */
 
- /*     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
 
-     _starpu_dggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
 
- 	    lscale[1], &rscale[1], &work[1], &ierr);
 
- /*     Compute ABNRM and BBNRM */
 
-     *abnrm = _starpu_dlange_("1", n, n, &a[a_offset], lda, &work[1]);
 
-     if (ilascl) {
 
- 	work[1] = *abnrm;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
 
- 		c__1, &ierr);
 
- 	*abnrm = work[1];
 
-     }
 
-     *bbnrm = _starpu_dlange_("1", n, n, &b[b_offset], ldb, &work[1]);
 
-     if (ilbscl) {
 
- 	work[1] = *bbnrm;
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
 
- 		c__1, &ierr);
 
- 	*bbnrm = work[1];
 
-     }
 
- /*     Reduce B to triangular form (QR decomposition of B) */
 
- /*     (Workspace: need N, prefer N*NB ) */
 
-     irows = *ihi + 1 - *ilo;
 
-     if (ilv || ! wantsn) {
 
- 	icols = *n + 1 - *ilo;
 
-     } else {
 
- 	icols = irows;
 
-     }
 
-     itau = 1;
 
-     iwrk = itau + irows;
 
-     i__1 = *lwork + 1 - iwrk;
 
-     _starpu_dgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
 
- 	    iwrk], &i__1, &ierr);
 
- /*     Apply the orthogonal transformation to A */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     i__1 = *lwork + 1 - iwrk;
 
-     _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
 
- 	    work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
 
- 	    ierr);
 
- /*     Initialize VL and/or VR */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     if (ilvl) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b59, &c_b60, &vl[vl_offset], ldvl)
 
- 		;
 
- 	if (irows > 1) {
 
- 	    i__1 = irows - 1;
 
- 	    i__2 = irows - 1;
 
- 	    _starpu_dlacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
 
- 		    *ilo + 1 + *ilo * vl_dim1], ldvl);
 
- 	}
 
- 	i__1 = *lwork + 1 - iwrk;
 
- 	_starpu_dorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
 
- 		work[itau], &work[iwrk], &i__1, &ierr);
 
-     }
 
-     if (ilvr) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b59, &c_b60, &vr[vr_offset], ldvr)
 
- 		;
 
-     }
 
- /*     Reduce to generalized Hessenberg form */
 
- /*     (Workspace: none needed) */
 
-     if (ilv || ! wantsn) {
 
- /*        Eigenvectors requested -- work on whole matrix. */
 
- 	_starpu_dgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], 
 
- 		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
 
-     } else {
 
- 	_starpu_dgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1], 
 
- 		lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
 
- 		vr_offset], ldvr, &ierr);
 
-     }
 
- /*     Perform QZ algorithm (Compute eigenvalues, and optionally, the */
 
- /*     Schur forms and Schur vectors) */
 
- /*     (Workspace: need N) */
 
-     if (ilv || ! wantsn) {
 
- 	*(unsigned char *)chtemp = 'S';
 
-     } else {
 
- 	*(unsigned char *)chtemp = 'E';
 
-     }
 
-     _starpu_dhgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
 
- , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
 
- 	    vr[vr_offset], ldvr, &work[1], lwork, &ierr);
 
-     if (ierr != 0) {
 
- 	if (ierr > 0 && ierr <= *n) {
 
- 	    *info = ierr;
 
- 	} else if (ierr > *n && ierr <= *n << 1) {
 
- 	    *info = ierr - *n;
 
- 	} else {
 
- 	    *info = *n + 1;
 
- 	}
 
- 	goto L130;
 
-     }
 
- /*     Compute Eigenvectors and estimate condition numbers if desired */
 
- /*     (Workspace: DTGEVC: need 6*N */
 
- /*                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
 
- /*                         need N otherwise ) */
 
-     if (ilv || ! wantsn) {
 
- 	if (ilv) {
 
- 	    if (ilvl) {
 
- 		if (ilvr) {
 
- 		    *(unsigned char *)chtemp = 'B';
 
- 		} else {
 
- 		    *(unsigned char *)chtemp = 'L';
 
- 		}
 
- 	    } else {
 
- 		*(unsigned char *)chtemp = 'R';
 
- 	    }
 
- 	    _starpu_dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], 
 
- 		    ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
 
- 		    work[1], &ierr);
 
- 	    if (ierr != 0) {
 
- 		*info = *n + 2;
 
- 		goto L130;
 
- 	    }
 
- 	}
 
- 	if (! wantsn) {
 
- /*           compute eigenvectors (DTGEVC) and estimate condition */
 
- /*           numbers (DTGSNA). Note that the definition of the condition */
 
- /*           number is not invariant under transformation (u,v) to */
 
- /*           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
 
- /*           Schur form (S,T), Q and Z are orthogonal matrices. In order */
 
- /*           to avoid using extra 2*N*N workspace, we have to recalculate */
 
- /*           eigenvectors and estimate one condition numbers at a time. */
 
- 	    pair = FALSE_;
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		if (pair) {
 
- 		    pair = FALSE_;
 
- 		    goto L20;
 
- 		}
 
- 		mm = 1;
 
- 		if (i__ < *n) {
 
- 		    if (a[i__ + 1 + i__ * a_dim1] != 0.) {
 
- 			pair = TRUE_;
 
- 			mm = 2;
 
- 		    }
 
- 		}
 
- 		i__2 = *n;
 
- 		for (j = 1; j <= i__2; ++j) {
 
- 		    bwork[j] = FALSE_;
 
- /* L10: */
 
- 		}
 
- 		if (mm == 1) {
 
- 		    bwork[i__] = TRUE_;
 
- 		} else if (mm == 2) {
 
- 		    bwork[i__] = TRUE_;
 
- 		    bwork[i__ + 1] = TRUE_;
 
- 		}
 
- 		iwrk = mm * *n + 1;
 
- 		iwrk1 = iwrk + mm * *n;
 
- /*              Compute a pair of left and right eigenvectors. */
 
- /*              (compute workspace: need up to 4*N + 6*N) */
 
- 		if (wantse || wantsb) {
 
- 		    _starpu_dtgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
 
- 			    b_offset], ldb, &work[1], n, &work[iwrk], n, &mm, 
 
- 			    &m, &work[iwrk1], &ierr);
 
- 		    if (ierr != 0) {
 
- 			*info = *n + 2;
 
- 			goto L130;
 
- 		    }
 
- 		}
 
- 		i__2 = *lwork - iwrk1 + 1;
 
- 		_starpu_dtgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
 
- 			b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
 
- 			i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
 
- 			iwork[1], &ierr);
 
- L20:
 
- 		;
 
- 	    }
 
- 	}
 
-     }
 
- /*     Undo balancing on VL and VR and normalization */
 
- /*     (Workspace: none needed) */
 
-     if (ilvl) {
 
- 	_starpu_dggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
 
- 		vl_offset], ldvl, &ierr);
 
- 	i__1 = *n;
 
- 	for (jc = 1; jc <= i__1; ++jc) {
 
- 	    if (alphai[jc] < 0.) {
 
- 		goto L70;
 
- 	    }
 
- 	    temp = 0.;
 
- 	    if (alphai[jc] == 0.) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 		    d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], abs(
 
- 			    d__1));
 
- 		    temp = max(d__2,d__3);
 
- /* L30: */
 
- 		}
 
- 	    } else {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 		    d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], abs(
 
- 			    d__1)) + (d__2 = vl[jr + (jc + 1) * vl_dim1], abs(
 
- 			    d__2));
 
- 		    temp = max(d__3,d__4);
 
- /* L40: */
 
- 		}
 
- 	    }
 
- 	    if (temp < smlnum) {
 
- 		goto L70;
 
- 	    }
 
- 	    temp = 1. / temp;
 
- 	    if (alphai[jc] == 0.) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    vl[jr + jc * vl_dim1] *= temp;
 
- /* L50: */
 
- 		}
 
- 	    } else {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    vl[jr + jc * vl_dim1] *= temp;
 
- 		    vl[jr + (jc + 1) * vl_dim1] *= temp;
 
- /* L60: */
 
- 		}
 
- 	    }
 
- L70:
 
- 	    ;
 
- 	}
 
-     }
 
-     if (ilvr) {
 
- 	_starpu_dggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
 
- 		vr_offset], ldvr, &ierr);
 
- 	i__1 = *n;
 
- 	for (jc = 1; jc <= i__1; ++jc) {
 
- 	    if (alphai[jc] < 0.) {
 
- 		goto L120;
 
- 	    }
 
- 	    temp = 0.;
 
- 	    if (alphai[jc] == 0.) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 		    d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], abs(
 
- 			    d__1));
 
- 		    temp = max(d__2,d__3);
 
- /* L80: */
 
- 		}
 
- 	    } else {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 		    d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], abs(
 
- 			    d__1)) + (d__2 = vr[jr + (jc + 1) * vr_dim1], abs(
 
- 			    d__2));
 
- 		    temp = max(d__3,d__4);
 
- /* L90: */
 
- 		}
 
- 	    }
 
- 	    if (temp < smlnum) {
 
- 		goto L120;
 
- 	    }
 
- 	    temp = 1. / temp;
 
- 	    if (alphai[jc] == 0.) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    vr[jr + jc * vr_dim1] *= temp;
 
- /* L100: */
 
- 		}
 
- 	    } else {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    vr[jr + jc * vr_dim1] *= temp;
 
- 		    vr[jr + (jc + 1) * vr_dim1] *= temp;
 
- /* L110: */
 
- 		}
 
- 	    }
 
- L120:
 
- 	    ;
 
- 	}
 
-     }
 
- /*     Undo scaling if necessary */
 
-     if (ilascl) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
 
- 		ierr);
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
 
- 		ierr);
 
-     }
 
-     if (ilbscl) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 
- 		ierr);
 
-     }
 
- L130:
 
-     work[1] = (doublereal) maxwrk;
 
-     return 0;
 
- /*     End of DGGEVX */
 
- } /* _starpu_dggevx_ */
 
 
  |