| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 | 
							- /* dgeqlf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__3 = 3;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int _starpu_dgeqlf_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
 
-     /* Local variables */
 
-     integer i__, k, ib, nb, ki, kk, mu, nu, nx, iws, nbmin, iinfo;
 
-     extern /* Subroutine */ int _starpu_dgeql2_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *), _starpu_dlarfb_(char *, 
 
- 	     char *, char *, char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *), _starpu_dlarft_(char *, char *, integer *, integer *, doublereal 
 
- 	    *, integer *, doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ldwork, lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEQLF computes a QL factorization of a real M-by-N matrix A: */
 
- /*  A = Q * L. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, */
 
- /*          if m >= n, the lower triangle of the subarray */
 
- /*          A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; */
 
- /*          if m <= n, the elements on and below the (n-m)-th */
 
- /*          superdiagonal contain the M-by-N lower trapezoidal matrix L; */
 
- /*          the remaining elements, with the array TAU, represent the */
 
- /*          orthogonal matrix Q as a product of elementary reflectors */
 
- /*          (see Further Details). */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors (see Further */
 
- /*          Details). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= max(1,N). */
 
- /*          For optimum performance LWORK >= N*NB, where NB is the */
 
- /*          optimal blocksize. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrix Q is represented as a product of elementary reflectors */
 
- /*     Q = H(k) . . . H(2) H(1), where k = min(m,n). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */
 
- /*  A(1:m-k+i-1,n-k+i), and tau in TAU(i). */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info == 0) {
 
- 	k = min(*m,*n);
 
- 	if (k == 0) {
 
- 	    lwkopt = 1;
 
- 	} else {
 
- 	    nb = _starpu_ilaenv_(&c__1, "DGEQLF", " ", m, n, &c_n1, &c_n1);
 
- 	    lwkopt = *n * nb;
 
- 	}
 
- 	work[1] = (doublereal) lwkopt;
 
- 	if (*lwork < max(1,*n) && ! lquery) {
 
- 	    *info = -7;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGEQLF", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (k == 0) {
 
- 	return 0;
 
-     }
 
-     nbmin = 2;
 
-     nx = 1;
 
-     iws = *n;
 
-     if (nb > 1 && nb < k) {
 
- /*        Determine when to cross over from blocked to unblocked code. */
 
- /* Computing MAX */
 
- 	i__1 = 0, i__2 = _starpu_ilaenv_(&c__3, "DGEQLF", " ", m, n, &c_n1, &c_n1);
 
- 	nx = max(i__1,i__2);
 
- 	if (nx < k) {
 
- /*           Determine if workspace is large enough for blocked code. */
 
- 	    ldwork = *n;
 
- 	    iws = ldwork * nb;
 
- 	    if (*lwork < iws) {
 
- /*              Not enough workspace to use optimal NB:  reduce NB and */
 
- /*              determine the minimum value of NB. */
 
- 		nb = *lwork / ldwork;
 
- /* Computing MAX */
 
- 		i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGEQLF", " ", m, n, &c_n1, &
 
- 			c_n1);
 
- 		nbmin = max(i__1,i__2);
 
- 	    }
 
- 	}
 
-     }
 
-     if (nb >= nbmin && nb < k && nx < k) {
 
- /*        Use blocked code initially. */
 
- /*        The last kk columns are handled by the block method. */
 
- 	ki = (k - nx - 1) / nb * nb;
 
- /* Computing MIN */
 
- 	i__1 = k, i__2 = ki + nb;
 
- 	kk = min(i__1,i__2);
 
- 	i__1 = k - kk + 1;
 
- 	i__2 = -nb;
 
- 	for (i__ = k - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ 
 
- 		+= i__2) {
 
- /* Computing MIN */
 
- 	    i__3 = k - i__ + 1;
 
- 	    ib = min(i__3,nb);
 
- /*           Compute the QL factorization of the current block */
 
- /*           A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1) */
 
- 	    i__3 = *m - k + i__ + ib - 1;
 
- 	    _starpu_dgeql2_(&i__3, &ib, &a[(*n - k + i__) * a_dim1 + 1], lda, &tau[
 
- 		    i__], &work[1], &iinfo);
 
- 	    if (*n - k + i__ > 1) {
 
- /*              Form the triangular factor of the block reflector */
 
- /*              H = H(i+ib-1) . . . H(i+1) H(i) */
 
- 		i__3 = *m - k + i__ + ib - 1;
 
- 		_starpu_dlarft_("Backward", "Columnwise", &i__3, &ib, &a[(*n - k + 
 
- 			i__) * a_dim1 + 1], lda, &tau[i__], &work[1], &ldwork);
 
- /*              Apply H' to A(1:m-k+i+ib-1,1:n-k+i-1) from the left */
 
- 		i__3 = *m - k + i__ + ib - 1;
 
- 		i__4 = *n - k + i__ - 1;
 
- 		_starpu_dlarfb_("Left", "Transpose", "Backward", "Columnwise", &i__3, 
 
- 			&i__4, &ib, &a[(*n - k + i__) * a_dim1 + 1], lda, &
 
- 			work[1], &ldwork, &a[a_offset], lda, &work[ib + 1], &
 
- 			ldwork);
 
- 	    }
 
- /* L10: */
 
- 	}
 
- 	mu = *m - k + i__ + nb - 1;
 
- 	nu = *n - k + i__ + nb - 1;
 
-     } else {
 
- 	mu = *m;
 
- 	nu = *n;
 
-     }
 
- /*     Use unblocked code to factor the last or only block */
 
-     if (mu > 0 && nu > 0) {
 
- 	_starpu_dgeql2_(&mu, &nu, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
 
-     }
 
-     work[1] = (doublereal) iws;
 
-     return 0;
 
- /*     End of DGEQLF */
 
- } /* _starpu_dgeqlf_ */
 
 
  |