310_data_management.doxy 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2019 CNRS
  4. * Copyright (C) 2009-2011,2014-2019 Université de Bordeaux
  5. * Copyright (C) 2011,2012 Inria
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*! \page DataManagement Data Management
  19. TODO: intro which mentions consistency among other things
  20. \section DataInterface Data Interface
  21. StarPU provides several data interfaces for programmers to describe the data layout of their application. There are predefined interfaces already available in StarPU. Users can define new data interfaces as explained in \ref DefiningANewDataInterface. All functions provided by StarPU are documented in \ref API_Data_Interfaces. You will find a short list below.
  22. \subsection VariableDataInterface Variable Data Interface
  23. A variable is a given size byte element, typically a scalar. Here an
  24. example of how to register a variable data to StarPU by using
  25. starpu_variable_data_register().
  26. \code{.c}
  27. float var = 42.0;
  28. starpu_data_handle_t var_handle;
  29. starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (uintptr_t)&var, sizeof(var));
  30. \endcode
  31. \subsection VectorDataInterface Vector Data Interface
  32. A vector is a fixed number of elements of a given size. Here an
  33. example of how to register a vector data to StarPU by using
  34. starpu_vector_data_register().
  35. \code{.c}
  36. float vector[NX];
  37. starpu_data_handle_t vector_handle;
  38. starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
  39. \endcode
  40. \subsection MatrixDataInterface Matrix Data Interface
  41. To register 2-D matrices with a potential padding, one can use the
  42. matrix data interface. Here an example of how to register a matrix
  43. data to StarPU by using starpu_matrix_data_register().
  44. \code{.c}
  45. float *matrix;
  46. starpu_data_handle_t matrix_handle;
  47. matrix = (float*)malloc(width * height * sizeof(float));
  48. starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, width, width, height, sizeof(float));
  49. \endcode
  50. \subsection BlockDataInterface Block Data Interface
  51. To register 3-D blocks with potential paddings on Y and Z dimensions,
  52. one can use the block data interface. Here an example of how to
  53. register a block data to StarPU by using starpu_block_data_register().
  54. \code{.c}
  55. float *block;
  56. starpu_data_handle_t block_handle;
  57. block = (float*)malloc(nx*ny*nz*sizeof(float));
  58. starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx, ny, nz, sizeof(float));
  59. \endcode
  60. \subsection BCSRDataInterface BCSR Data Interface
  61. BCSR (Blocked Compressed Sparse Row Representation) sparse matrix data
  62. can be registered to StarPU using the bcsr data interface. Here an
  63. example on how to do so by using starpu_bcsr_data_register().
  64. \code{.c}
  65. /*
  66. * We use the following matrix:
  67. *
  68. * +----------------+
  69. * | 0 1 0 0 |
  70. * | 2 3 0 0 |
  71. * | 4 5 8 9 |
  72. * | 6 7 10 11 |
  73. * +----------------+
  74. *
  75. * nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]
  76. * colind = [0, 0, 1]
  77. * rowptr = [0, 1, 3]
  78. * r = c = 2
  79. */
  80. /* Size of the blocks */
  81. int R = 2;
  82. int C = 2;
  83. int NROWS = 2;
  84. int NNZ_BLOCKS = 3; /* out of 4 */
  85. int NZVAL_SIZE = (R*C*NNZ_BLOCKS);
  86. int nzval[NZVAL_SIZE] =
  87. {
  88. 0, 1, 2, 3, /* First block */
  89. 4, 5, 6, 7, /* Second block */
  90. 8, 9, 10, 11 /* Third block */
  91. };
  92. uint32_t colind[NNZ_BLOCKS] =
  93. {
  94. 0, /* block-column index for first block in nzval */
  95. 0, /* block-column index for second block in nzval */
  96. 1 /* block-column index for third block in nzval */
  97. };
  98. uint32_t rowptr[NROWS+1] =
  99. {
  100. 0, / * block-index in nzval of the first block of the first row. */
  101. 1, / * block-index in nzval of the first block of the second row. */
  102. NNZ_BLOCKS /* number of blocks, to allow an easier element's access for the kernels */
  103. };
  104. starpu_data_handle_t bcsr_handle;
  105. starpu_bcsr_data_register(&bcsr_handle,
  106. STARPU_MAIN_RAM,
  107. NNZ_BLOCKS,
  108. NROWS,
  109. (uintptr_t) nzval,
  110. colind,
  111. rowptr,
  112. 0, /* firstentry */
  113. R,
  114. C,
  115. sizeof(nzval[0]));
  116. \endcode
  117. StarPU provides an example on how to deal with such matrices in
  118. <c>examples/spmv</c>.
  119. \subsection CSRDataInterface CSR Data Interface
  120. TODO
  121. \subsection VariableSizeDataInterface Data Interface with Variable Size
  122. Tasks are actually allowed to change the size of data interfaces.
  123. The simplest case is just changing the amount of data actually used within the
  124. allocated buffer. This is for instance implemented for the matrix interface: one
  125. can set the new NX/NY values with STARPU_MATRIX_SET_NX(), STARPU_MATRIX_SET_NY(), and STARPU_MATRIX_SET_LD()
  126. at the end of the task implementation. Data transfers achieved by StarPU will
  127. then use these values instead of the whole allocated size. The values of course
  128. need to be set within the original allocation. To reserve room for increasing
  129. the NX/NY values, one can use starpu_matrix_data_register_allocsize() instead of
  130. starpu_matrix_data_register(), to specify the allocation size to be used instead
  131. of the default NX*NY*ELEMSIZE. To support this, the data interface
  132. has to implement the starpu_data_interface_ops::alloc_footprint and
  133. starpu_data_interface_ops::alloc_compare methods, for proper StarPU allocation
  134. management.
  135. A more involved case is changing the amount of allocated data.
  136. The task implementation can just reallocate the buffer during its execution, and
  137. set the proper new values in the interface structure, e.g. nx, ny, ld, etc. so
  138. that the StarPU core knows the new data layout. The starpu_data_interface_ops
  139. structure however then needs to have the starpu_data_interface_ops::dontcache
  140. field set to 1, to prevent StarPU from trying to perform any cached allocation,
  141. since the allocated size will vary. An example is available in
  142. <c>tests/datawizard/variable_size.c</c>
  143. \section DataManagement Data Management
  144. When the application allocates data, whenever possible it should use
  145. the starpu_malloc() function, which will ask CUDA or OpenCL to make
  146. the allocation itself and pin the corresponding allocated memory, or to use the
  147. starpu_memory_pin() function to pin memory allocated by other ways, such as local arrays. This
  148. is needed to permit asynchronous data transfer, i.e. permit data
  149. transfer to overlap with computations. Otherwise, the trace will show
  150. that the <c>DriverCopyAsync</c> state takes a lot of time, this is
  151. because CUDA or OpenCL then reverts to synchronous transfers.
  152. The application can provide its own allocation function by calling
  153. starpu_malloc_set_hooks(). StarPU will then use them for all data handle
  154. allocations in the main memory.
  155. By default, StarPU leaves replicates of data wherever they were used, in case they
  156. will be re-used by other tasks, thus saving the data transfer time. When some
  157. task modifies some data, all the other replicates are invalidated, and only the
  158. processing unit which ran this task will have a valid replicate of the data. If the application knows
  159. that this data will not be re-used by further tasks, it should advise StarPU to
  160. immediately replicate it to a desired list of memory nodes (given through a
  161. bitmask). This can be understood like the write-through mode of CPU caches.
  162. \code{.c}
  163. starpu_data_set_wt_mask(img_handle, 1<<0);
  164. \endcode
  165. will for instance request to always automatically transfer a replicate into the
  166. main memory (node <c>0</c>), as bit <c>0</c> of the write-through bitmask is being set.
  167. \code{.c}
  168. starpu_data_set_wt_mask(img_handle, ~0U);
  169. \endcode
  170. will request to always automatically broadcast the updated data to all memory
  171. nodes.
  172. Setting the write-through mask to <c>~0U</c> can also be useful to make sure all
  173. memory nodes always have a copy of the data, so that it is never evicted when
  174. memory gets scarse.
  175. Implicit data dependency computation can become expensive if a lot
  176. of tasks access the same piece of data. If no dependency is required
  177. on some piece of data (e.g. because it is only accessed in read-only
  178. mode, or because write accesses are actually commutative), use the
  179. function starpu_data_set_sequential_consistency_flag() to disable
  180. implicit dependencies on this data.
  181. In the same vein, accumulation of results in the same data can become a
  182. bottleneck. The use of the mode ::STARPU_REDUX permits to optimize such
  183. accumulation (see \ref DataReduction). To a lesser extent, the use of
  184. the flag ::STARPU_COMMUTE keeps the bottleneck (see \ref DataCommute), but at least permits
  185. the accumulation to happen in any order.
  186. Applications often need a data just for temporary results. In such a case,
  187. registration can be made without an initial value, for instance this produces a vector data:
  188. \code{.c}
  189. starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));
  190. \endcode
  191. StarPU will then allocate the actual buffer only when it is actually needed,
  192. e.g. directly on the GPU without allocating in main memory.
  193. In the same vein, once the temporary results are not useful any more, the
  194. data should be thrown away. If the handle is not to be reused, it can be
  195. unregistered:
  196. \code{.c}
  197. starpu_data_unregister_submit(handle);
  198. \endcode
  199. actual unregistration will be done after all tasks working on the handle
  200. terminate.
  201. If the handle is to be reused, instead of unregistering it, it can simply be invalidated:
  202. \code{.c}
  203. starpu_data_invalidate_submit(handle);
  204. \endcode
  205. the buffers containing the current value will then be freed, and reallocated
  206. only when another task writes some value to the handle.
  207. \section DataPrefetch Data Prefetch
  208. The scheduling policies <c>heft</c>, <c>dmda</c> and <c>pheft</c>
  209. perform data prefetch (see \ref STARPU_PREFETCH):
  210. as soon as a scheduling decision is taken for a task, requests are issued to
  211. transfer its required data to the target processing unit, if needed, so that
  212. when the processing unit actually starts the task, its data will hopefully be
  213. already available and it will not have to wait for the transfer to finish.
  214. The application may want to perform some manual prefetching, for several reasons
  215. such as excluding initial data transfers from performance measurements, or
  216. setting up an initial statically-computed data distribution on the machine
  217. before submitting tasks, which will thus guide StarPU toward an initial task
  218. distribution (since StarPU will try to avoid further transfers).
  219. This can be achieved by giving the function starpu_data_prefetch_on_node() the
  220. handle and the desired target memory node. The
  221. starpu_data_idle_prefetch_on_node() variant can be used to issue the transfer
  222. only when the bus is idle.
  223. Conversely, one can advise StarPU that some data will not be useful in the
  224. close future by calling starpu_data_wont_use(). StarPU will then write its value
  225. back to its home node, and evict it from GPUs when room is needed.
  226. \section PartitioningData Partitioning Data
  227. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  228. \code{.c}
  229. #define NX 1048576
  230. #define PARTS 16
  231. int vector[NX];
  232. starpu_data_handle_t handle;
  233. /* Declare data to StarPU */
  234. starpu_vector_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
  235. /* Partition the vector in PARTS sub-vectors */
  236. struct starpu_data_filter f =
  237. {
  238. .filter_func = starpu_vector_filter_block,
  239. .nchildren = PARTS
  240. };
  241. starpu_data_partition(handle, &f);
  242. \endcode
  243. The task submission then uses the function starpu_data_get_sub_data()
  244. to retrieve the sub-handles to be passed as tasks parameters.
  245. \code{.c}
  246. /* Submit a task on each sub-vector */
  247. for (i=0; i<starpu_data_get_nb_children(handle); i++)
  248. {
  249. /* Get subdata number i (there is only 1 dimension) */
  250. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 1, i);
  251. struct starpu_task *task = starpu_task_create();
  252. task->handles[0] = sub_handle;
  253. task->cl = &cl;
  254. task->synchronous = 1;
  255. task->cl_arg = &factor;
  256. task->cl_arg_size = sizeof(factor);
  257. starpu_task_submit(task);
  258. }
  259. \endcode
  260. Partitioning can be applied several times, see
  261. <c>examples/basic_examples/mult.c</c> and <c>examples/filters/</c>.
  262. Wherever the whole piece of data is already available, the partitioning will
  263. be done in-place, i.e. without allocating new buffers but just using pointers
  264. inside the existing copy. This is particularly important to be aware of when
  265. using OpenCL, where the kernel parameters are not pointers, but \c cl_mem handles. The
  266. kernel thus needs to be also passed the offset within the OpenCL buffer:
  267. \code{.c}
  268. void opencl_func(void *buffers[], void *cl_arg)
  269. {
  270. cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
  271. unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);
  272. ...
  273. clSetKernelArg(kernel, 0, sizeof(vector), &vector);
  274. clSetKernelArg(kernel, 1, sizeof(offset), &offset);
  275. ...
  276. }
  277. \endcode
  278. And the kernel has to shift from the pointer passed by the OpenCL driver:
  279. \code{.c}
  280. __kernel void opencl_kernel(__global int *vector, unsigned offset)
  281. {
  282. block = (__global void *)block + offset;
  283. ...
  284. }
  285. \endcode
  286. When the sub-data is not of the same type as the original data, the
  287. starpu_data_filter::get_child_ops field needs to be set appropriately for StarPU
  288. to know which type should be used.
  289. StarPU provides various interfaces and filters for matrices, vectors, etc.,
  290. but applications can also write their own data interfaces and filters, see
  291. <c>examples/interface</c> and <c>examples/filters/custom_mf</c> for an example,
  292. and see \ref DefiningANewDataInterface and \ref DefiningANewDataFilter
  293. for documentation.
  294. \section AsynchronousPartitioning Asynchronous Partitioning
  295. The partitioning functions described in the previous section are synchronous:
  296. starpu_data_partition() and starpu_data_unpartition() both wait for all the tasks
  297. currently working on the data. This can be a bottleneck for the application.
  298. An asynchronous API also exists, it works only on handles with sequential
  299. consistency. The principle is to first plan the partitioning, which returns
  300. data handles of the partition, which are not functional yet. When submitting
  301. tasks, one can mix using the handles of the partition, of the whole data. One
  302. can even partition recursively and mix using handles at different levels of the
  303. recursion. Of course, StarPU will have to introduce coherency synchronization.
  304. <c>fmultiple_submit_implicit</c> is a complete example using this technique.
  305. One can also look at <c>fmultiple_submit_readonly</c> which contains the
  306. explicit coherency synchronization which are automatically introduced by StarPU
  307. for <c>fmultiple_submit_implicit</c>.
  308. In short, we first register a matrix and plan the partitioning:
  309. \code{.c}
  310. starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
  311. struct starpu_data_filter f_vert =
  312. {
  313. .filter_func = starpu_matrix_filter_block,
  314. .nchildren = PARTS
  315. };
  316. starpu_data_partition_plan(handle, &f_vert, vert_handle);
  317. \endcode
  318. starpu_data_partition_plan() returns the handles for the partition in <c>vert_handle</c>.
  319. One can then submit tasks working on the main handle, and tasks working on
  320. <c>vert_handle</c> handles. Between using the main handle and <c>vert_handle</c>
  321. handles, StarPU will automatically call starpu_data_partition_submit() and
  322. starpu_data_unpartition_submit().
  323. All this code is asynchronous, just submitting which tasks, partitioning and
  324. unpartitioning will be done at runtime.
  325. Planning several partitioning of the same data is also possible, StarPU will
  326. unpartition and repartition as needed when mixing accesses of different
  327. partitions. If data access is done in read-only mode, StarPU will allow the
  328. different partitioning to coexist. As soon as a data is accessed in read-write
  329. mode, StarPU will automatically unpartition everything and activate only the
  330. partitioning leading to the data being written to.
  331. For instance, for a stencil application, one can split a subdomain into
  332. its interior and halos, and then just submit a task updating the whole
  333. subdomain, then submit MPI sends/receives to update the halos, then submit
  334. again a task updating the whole subdomain, etc. and StarPU will automatically
  335. partition/unpartition each time.
  336. \section ManualPartitioning Manual Partitioning
  337. One can also handle partitioning by hand, by registering several views on the
  338. same piece of data. The idea is then to manage the coherency of the various
  339. views through the common buffer in the main memory.
  340. <c>fmultiple_manual</c> is a complete example using this technique.
  341. In short, we first register the same matrix several times:
  342. \code{.c}
  343. starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
  344. for (i = 0; i < PARTS; i++)
  345. starpu_matrix_data_register(&vert_handle[i], STARPU_MAIN_RAM, (uintptr_t)&matrix[0][i*(NX/PARTS)], NX, NX/PARTS, NY, sizeof(matrix[0][0]));
  346. \endcode
  347. Since StarPU is not aware that the two handles are actually pointing to the same
  348. data, we have a danger of inadvertently submitting tasks to both views, which
  349. will bring a mess since StarPU will not guarantee any coherency between the two
  350. views. To make sure we don't do this, we invalidate the view that we will not
  351. use:
  352. \code{.c}
  353. for (i = 0; i < PARTS; i++)
  354. starpu_data_invalidate(vert_handle[i]);
  355. \endcode
  356. Then we can safely work on <c>handle</c>.
  357. When we want to switch to the vertical slice view, all we need to do is bring
  358. coherency between them by running an empty task on the home node of the data:
  359. \code{.c}
  360. void empty(void *buffers[], void *cl_arg)
  361. { }
  362. struct starpu_codelet cl_switch =
  363. {
  364. .cpu_funcs = {empty},
  365. .nbuffers = STARPU_VARIABLE_NBUFFERS,
  366. };
  367. ret = starpu_task_insert(&cl_switch, STARPU_RW, handle,
  368. STARPU_W, vert_handle[0],
  369. STARPU_W, vert_handle[1],
  370. 0);
  371. \endcode
  372. The execution of the <c>switch</c> task will get back the matrix data into the
  373. main memory, and thus the vertical slices will get the updated value there.
  374. Again, we prefer to make sure that we don't accidentally access the matrix through the whole-matrix handle:
  375. \code{.c}
  376. starpu_data_invalidate_submit(handle);
  377. \endcode
  378. And now we can start using vertical slices, etc.
  379. \section DefiningANewDataFilter Defining A New Data Filter
  380. StarPU provides a series of predefined filters in \ref API_Data_Partition, but
  381. additional filters can be defined by the application. The principle is that the
  382. filter function just fills the memory location of the <c>i-th</c> subpart of a data.
  383. Examples are provided in <c>src/datawizard/interfaces/*_filters.c</c>,
  384. and see \ref starpu_data_filter::filter_func for the details.
  385. The starpu_filter_nparts_compute_chunk_size_and_offset() helper can be used to
  386. compute the division of pieces of data.
  387. \section DataReduction Data Reduction
  388. In various cases, some piece of data is used to accumulate intermediate
  389. results. For instances, the dot product of a vector, maximum/minimum finding,
  390. the histogram of a photograph, etc. When these results are produced along the
  391. whole machine, it would not be efficient to accumulate them in only one place,
  392. incurring data transmission each and access concurrency.
  393. StarPU provides a mode ::STARPU_REDUX, which permits to optimize
  394. this case: it will allocate a buffer on each memory node, and accumulate
  395. intermediate results there. When the data is eventually accessed in the normal
  396. mode ::STARPU_R, StarPU will collect the intermediate results in just one
  397. buffer.
  398. For this to work, the user has to use the function
  399. starpu_data_set_reduction_methods() to declare how to initialize these
  400. buffers, and how to assemble partial results.
  401. For instance, <c>cg</c> uses that to optimize its dot product: it first defines
  402. the codelets for initialization and reduction:
  403. \code{.c}
  404. struct starpu_codelet bzero_variable_cl =
  405. {
  406. .cpu_funcs = { bzero_variable_cpu },
  407. .cpu_funcs_name = { "bzero_variable_cpu" },
  408. .cuda_funcs = { bzero_variable_cuda },
  409. .nbuffers = 1,
  410. }
  411. static void accumulate_variable_cpu(void *descr[], void *cl_arg)
  412. {
  413. double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
  414. double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
  415. *v_dst = *v_dst + *v_src;
  416. }
  417. static void accumulate_variable_cuda(void *descr[], void *cl_arg)
  418. {
  419. double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
  420. double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
  421. cublasaxpy(1, (double)1.0, v_src, 1, v_dst, 1);
  422. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  423. }
  424. struct starpu_codelet accumulate_variable_cl =
  425. {
  426. .cpu_funcs = { accumulate_variable_cpu },
  427. .cpu_funcs_name = { "accumulate_variable_cpu" },
  428. .cuda_funcs = { accumulate_variable_cuda },
  429. .nbuffers = 1,
  430. }
  431. \endcode
  432. and attaches them as reduction methods for its handle <c>dtq</c>:
  433. \code{.c}
  434. starpu_variable_data_register(&dtq_handle, -1, NULL, sizeof(type));
  435. starpu_data_set_reduction_methods(dtq_handle, &accumulate_variable_cl, &bzero_variable_cl);
  436. \endcode
  437. and <c>dtq_handle</c> can now be used in mode ::STARPU_REDUX for the
  438. dot products with partitioned vectors:
  439. \code{.c}
  440. for (b = 0; b < nblocks; b++)
  441. starpu_task_insert(&dot_kernel_cl,
  442. STARPU_REDUX, dtq_handle,
  443. STARPU_R, starpu_data_get_sub_data(v1, 1, b),
  444. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  445. 0);
  446. \endcode
  447. During registration, we have here provided <c>NULL</c>, i.e. there is
  448. no initial value to be taken into account during reduction. StarPU
  449. will thus only take into account the contributions from the tasks
  450. <c>dot_kernel_cl</c>. Also, it will not allocate any memory for
  451. <c>dtq_handle</c> before tasks <c>dot_kernel_cl</c> are ready to run.
  452. If another dot product has to be performed, one could unregister
  453. <c>dtq_handle</c>, and re-register it. But one can also call
  454. starpu_data_invalidate_submit() with the parameter <c>dtq_handle</c>,
  455. which will clear all data from the handle, thus resetting it back to
  456. the initial status <c>register(NULL)</c>.
  457. The example <c>cg</c> also uses reduction for the blocked gemv kernel,
  458. leading to yet more relaxed dependencies and more parallelism.
  459. ::STARPU_REDUX can also be passed to starpu_mpi_task_insert() in the MPI
  460. case. This will however not produce any MPI communication, but just pass
  461. ::STARPU_REDUX to the underlying starpu_task_insert(). It is up to the
  462. application to call starpu_mpi_redux_data(), which posts tasks which will
  463. reduce the partial results among MPI nodes into the MPI node which owns the
  464. data. For instance, some hypothetical application which collects partial results
  465. into data <c>res</c>, then uses it for other computation, before looping again
  466. with a new reduction:
  467. \code{.c}
  468. for (i = 0; i < 100; i++)
  469. {
  470. starpu_mpi_task_insert(MPI_COMM_WORLD, &init_res, STARPU_W, res, 0);
  471. starpu_mpi_task_insert(MPI_COMM_WORLD, &work, STARPU_RW, A, STARPU_R, B, STARPU_REDUX, res, 0);
  472. starpu_mpi_redux_data(MPI_COMM_WORLD, res);
  473. starpu_mpi_task_insert(MPI_COMM_WORLD, &work2, STARPU_RW, B, STARPU_R, res, 0);
  474. }
  475. \endcode
  476. \section DataCommute Commute Data Access
  477. By default, the implicit dependencies computed from data access use the
  478. sequential semantic. Notably, write accesses are always serialized in the order
  479. of submission. In some applicative cases, the write contributions can actually
  480. be performed in any order without affecting the eventual result. In this case
  481. it is useful to drop the strictly sequential semantic, to improve parallelism
  482. by allowing StarPU to reorder the write accesses. This can be done by using
  483. the ::STARPU_COMMUTE data access flag. Accesses without this flag will however
  484. properly be serialized against accesses with this flag. For instance:
  485. \code{.c}
  486. starpu_task_insert(&cl1, STARPU_R, h, STARPU_RW, handle, 0);
  487. starpu_task_insert(&cl2, STARPU_R, handle1, STARPU_RW|STARPU_COMMUTE, handle, 0);
  488. starpu_task_insert(&cl2, STARPU_R, handle2, STARPU_RW|STARPU_COMMUTE, handle, 0);
  489. starpu_task_insert(&cl3, STARPU_R, g, STARPU_RW, handle, 0);
  490. \endcode
  491. The two tasks running <c>cl2</c> will be able to commute: depending on whether the
  492. value of <c>handle1</c> or <c>handle2</c> becomes available first, the corresponding task
  493. running <c>cl2</c> will start first. The task running <c>cl1</c> will however always be run
  494. before them, and the task running <c>cl3</c> will always be run after them.
  495. If a lot of tasks use the commute access on the same set of data and a lot of
  496. them are ready at the same time, it may become interesting to use an arbiter,
  497. see \ref ConcurrentDataAccess.
  498. \section ConcurrentDataAccess Concurrent Data Accesses
  499. When several tasks are ready and will work on several data, StarPU is faced with
  500. the classical Dining Philosophers problem, and has to determine the order in
  501. which it will run the tasks.
  502. Data accesses usually use sequential ordering, so data accesses are usually
  503. already serialized, and thus by default StarPU uses the Dijkstra solution which
  504. scales very well in terms of overhead: tasks will just acquire data one by one
  505. by data handle pointer value order.
  506. When sequential ordering is disabled or the ::STARPU_COMMUTE flag is used, there
  507. may be a lot of concurrent accesses to the same data, and the Dijkstra solution
  508. gets only poor parallelism, typically in some pathological cases which do happen
  509. in various applications. In this case, one can use a data access arbiter, which
  510. implements the classical centralized solution for the Dining Philosophers
  511. problem. This is more expensive in terms of overhead since it is centralized,
  512. but it opportunistically gets a lot of parallelism. The centralization can also
  513. be avoided by using several arbiters, thus separating sets of data for which
  514. arbitration will be done. If a task accesses data from different arbiters, it
  515. will acquire them arbiter by arbiter, in arbiter pointer value order.
  516. See the <c>tests/datawizard/test_arbiter.cpp</c> example.
  517. Arbiters however do not support the ::STARPU_REDUX flag yet.
  518. \section TemporaryBuffers Temporary Buffers
  519. There are two kinds of temporary buffers: temporary data which just pass results
  520. from a task to another, and scratch data which are needed only internally by
  521. tasks.
  522. \subsection TemporaryData Temporary Data
  523. Data can sometimes be entirely produced by a task, and entirely consumed by
  524. another task, without the need for other parts of the application to access
  525. it. In such case, registration can be done without prior allocation, by using
  526. the special memory node number <c>-1</c>, and passing a zero pointer. StarPU will
  527. actually allocate memory only when the task creating the content gets scheduled,
  528. and destroy it on unregistration.
  529. In addition to this, it can be tedious for the application to have to unregister
  530. the data, since it will not use its content anyway. The unregistration can be
  531. done lazily by using the function starpu_data_unregister_submit(),
  532. which will record that no more tasks accessing the handle will be submitted, so
  533. that it can be freed as soon as the last task accessing it is over.
  534. The following code examplifies both points: it registers the temporary
  535. data, submits three tasks accessing it, and records the data for automatic
  536. unregistration.
  537. \code{.c}
  538. starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));
  539. starpu_task_insert(&produce_data, STARPU_W, handle, 0);
  540. starpu_task_insert(&compute_data, STARPU_RW, handle, 0);
  541. starpu_task_insert(&summarize_data, STARPU_R, handle, STARPU_W, result_handle, 0);
  542. starpu_data_unregister_submit(handle);
  543. \endcode
  544. The application may also want to see the temporary data initialized
  545. on the fly before being used by the task. This can be done by using
  546. starpu_data_set_reduction_methods() to set an initialization codelet (no redux
  547. codelet is needed).
  548. \subsection ScratchData Scratch Data
  549. Some kernels sometimes need temporary data to achieve the computations, i.e. a
  550. workspace. The application could allocate it at the start of the codelet
  551. function, and free it at the end, but this would be costly. It could also
  552. allocate one buffer per worker (similarly to \ref HowToInitializeAComputationLibraryOnceForEachWorker),
  553. but this would
  554. make them systematic and permanent. A more optimized way is to use
  555. the data access mode ::STARPU_SCRATCH, as examplified below, which
  556. provides per-worker buffers without content consistency. The buffer is
  557. registered only once, using memory node <c>-1</c>, i.e. the application didn't allocate
  558. memory for it, and StarPU will allocate it on demand at task execution.
  559. \code{.c}
  560. starpu_vector_data_register(&workspace, -1, 0, sizeof(float));
  561. for (i = 0; i < N; i++)
  562. starpu_task_insert(&compute, STARPU_R, input[i], STARPU_SCRATCH, workspace, STARPU_W, output[i], 0);
  563. \endcode
  564. StarPU will make sure that the buffer is allocated before executing the task,
  565. and make this allocation per-worker: for CPU workers, notably, each worker has
  566. its own buffer. This means that each task submitted above will actually have its
  567. own workspace, which will actually be the same for all tasks running one after
  568. the other on the same worker. Also, if for instance memory becomes scarce,
  569. StarPU will notice that it can free such buffers easily, since the content does
  570. not matter.
  571. The example <c>examples/pi</c> uses scratches for some temporary buffer.
  572. \section TheMultiformatInterface The Multiformat Interface
  573. It may be interesting to represent the same piece of data using two different
  574. data structures: one only used on CPUs, and one only used on GPUs.
  575. This can be done by using the multiformat interface. StarPU
  576. will be able to convert data from one data structure to the other when needed.
  577. Note that the scheduler <c>dmda</c> is the only one optimized for this
  578. interface. The user must provide StarPU with conversion codelets:
  579. \snippet multiformat.c To be included. You should update doxygen if you see this text.
  580. Kernels can be written almost as for any other interface. Note that
  581. ::STARPU_MULTIFORMAT_GET_CPU_PTR shall only be used for CPU kernels. CUDA kernels
  582. must use ::STARPU_MULTIFORMAT_GET_CUDA_PTR, and OpenCL kernels must use
  583. ::STARPU_MULTIFORMAT_GET_OPENCL_PTR. ::STARPU_MULTIFORMAT_GET_NX may
  584. be used in any kind of kernel.
  585. \code{.c}
  586. static void
  587. multiformat_scal_cpu_func(void *buffers[], void *args)
  588. {
  589. struct point *aos;
  590. unsigned int n;
  591. aos = STARPU_MULTIFORMAT_GET_CPU_PTR(buffers[0]);
  592. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  593. ...
  594. }
  595. extern "C" void multiformat_scal_cuda_func(void *buffers[], void *_args)
  596. {
  597. unsigned int n;
  598. struct struct_of_arrays *soa;
  599. soa = (struct struct_of_arrays *) STARPU_MULTIFORMAT_GET_CUDA_PTR(buffers[0]);
  600. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  601. ...
  602. }
  603. \endcode
  604. A full example may be found in <c>examples/basic_examples/multiformat.c</c>.
  605. \section DefiningANewDataInterface Defining A New Data Interface
  606. Let's define a new data interface to manage complex numbers.
  607. \code{.c}
  608. /* interface for complex numbers */
  609. struct starpu_complex_interface
  610. {
  611. double *real;
  612. double *imaginary;
  613. int nx;
  614. };
  615. \endcode
  616. Registering such a data to StarPU is easily done using the function
  617. starpu_data_register(). The last
  618. parameter of the function, <c>interface_complex_ops</c>, will be
  619. described below.
  620. \code{.c}
  621. void starpu_complex_data_register(starpu_data_handle_t *handle,
  622. unsigned home_node, double *real, double *imaginary, int nx)
  623. {
  624. struct starpu_complex_interface complex =
  625. {
  626. .real = real,
  627. .imaginary = imaginary,
  628. .nx = nx
  629. };
  630. if (interface_complex_ops.interfaceid == STARPU_UNKNOWN_INTERFACE_ID)
  631. {
  632. interface_complex_ops.interfaceid = starpu_data_interface_get_next_id();
  633. }
  634. starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);
  635. }
  636. \endcode
  637. The <c>starpu_complex_interface</c> structure is here used just to store the
  638. parameters that the user provided to <c>starpu_complex_data_register</c>.
  639. starpu_data_register() will first allocate the handle, and
  640. then pass the <c>starpu_complex_interface</c> structure to the
  641. starpu_data_interface_ops::register_data_handle method, which records them
  642. within the data handle (it is called once per node by starpu_data_register()).
  643. Different operations need to be defined for a data interface through
  644. the type starpu_data_interface_ops. We only define here the basic
  645. operations needed to run simple applications. The source code for the
  646. different functions can be found in the file
  647. <c>examples/interface/complex_interface.c</c>, the details of the hooks to be
  648. provided are documented in \ref starpu_data_interface_ops .
  649. \code{.c}
  650. static struct starpu_data_interface_ops interface_complex_ops =
  651. {
  652. .register_data_handle = complex_register_data_handle,
  653. .allocate_data_on_node = complex_allocate_data_on_node,
  654. .copy_methods = &complex_copy_methods,
  655. .get_size = complex_get_size,
  656. .footprint = complex_footprint,
  657. .interfaceid = STARPU_UNKNOWN_INTERFACE_ID,
  658. .interface_size = sizeof(struct starpu_complex_interface),
  659. };
  660. \endcode
  661. Functions need to be defined to access the different fields of the
  662. complex interface from a StarPU data handle.
  663. \code{.c}
  664. double *starpu_complex_get_real(starpu_data_handle_t handle)
  665. {
  666. struct starpu_complex_interface *complex_interface =
  667. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, STARPU_MAIN_RAM);
  668. return complex_interface->real;
  669. }
  670. double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
  671. int starpu_complex_get_nx(starpu_data_handle_t handle);
  672. \endcode
  673. Similar functions need to be defined to access the different fields of the
  674. complex interface from a <c>void *</c> pointer to be used within codelet
  675. implemetations.
  676. \snippet complex.c To be included. You should update doxygen if you see this text.
  677. Complex data interfaces can then be registered to StarPU.
  678. \code{.c}
  679. double real = 45.0;
  680. double imaginary = 12.0;
  681. starpu_complex_data_register(&handle1, STARPU_MAIN_RAM, &real, &imaginary, 1);
  682. starpu_task_insert(&cl_display, STARPU_R, handle1, 0);
  683. \endcode
  684. and used by codelets.
  685. \code{.c}
  686. void display_complex_codelet(void *descr[], void *_args)
  687. {
  688. int nx = STARPU_COMPLEX_GET_NX(descr[0]);
  689. double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
  690. double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
  691. int i;
  692. for(i=0 ; i<nx ; i++)
  693. {
  694. fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
  695. }
  696. }
  697. \endcode
  698. The whole code for this complex data interface is available in the
  699. directory <c>examples/interface/</c>.
  700. \section SpecifyingATargetNode Specifying A Target Node For Task Data
  701. When executing a task on a GPU for instance, StarPU would normally copy all the
  702. needed data for the tasks on the embedded memory of the GPU. It may however
  703. happen that the task kernel would rather have some of the datas kept in the
  704. main memory instead of copied in the GPU, a pivoting vector for instance.
  705. This can be achieved by setting the starpu_codelet::specific_nodes flag to
  706. <c>1</c>, and then fill the starpu_codelet::nodes array (or starpu_codelet::dyn_nodes when
  707. starpu_codelet::nbuffers is greater than \ref STARPU_NMAXBUFS) with the node numbers
  708. where data should be copied to, or ::STARPU_SPECIFIC_NODE_LOCAL to let
  709. StarPU copy it to the memory node where the task will be executed.
  710. ::STARPU_SPECIFIC_NODE_CPU can also be used to request data to be
  711. put in CPU-accessible memory (and let StarPU choose the NUMA node).
  712. ::STARPU_SPECIFIC_NODE_FAST and ::STARPU_SPECIFIC_NODE_SLOW can also be
  713. used
  714. For instance,
  715. with the following codelet:
  716. \code{.c}
  717. struct starpu_codelet cl =
  718. {
  719. .cuda_funcs = { kernel },
  720. .nbuffers = 2,
  721. .modes = {STARPU_RW, STARPU_RW},
  722. .specific_nodes = 1,
  723. .nodes = {STARPU_SPECIFIC_NODE_CPU, STARPU_SPECIFIC_NODE_LOCAL},
  724. };
  725. \endcode
  726. the first data of the task will be kept in the CPU memory, while the second
  727. data will be copied to the CUDA GPU as usual. A working example is available in
  728. <c>tests/datawizard/specific_node.c</c>
  729. With the following codelet:
  730. \code{.c}
  731. struct starpu_codelet cl =
  732. {
  733. .cuda_funcs = { kernel },
  734. .nbuffers = 2,
  735. .modes = {STARPU_RW, STARPU_RW},
  736. .specific_nodes = 1,
  737. .nodes = {STARPU_SPECIFIC_NODE_LOCAL, STARPU_SPECIFIC_NODE_SLOW},
  738. };
  739. \endcode
  740. The first data will be copied into fast (but probably size-limited) local memory
  741. while the second data will be left in slow (but large) memory. This makes sense
  742. when the kernel does not make so many accesses to the second data, and thus data
  743. being remote e.g. over a PCI bus is not a performance problem, and avoids
  744. filling the fast local memory with data which does not need the performance.
  745. */