performance_feedback.doxy 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page PerformanceFeedback Performance Feedback
  9. \section UsingTheTemanejoTaskDebugger Using The Temanejo Task Debugger
  10. StarPU can connect to Temanejo (see
  11. http://www.hlrs.de/temanejo), to permit
  12. nice visual task debugging. To do so, build Temanejo's <c>libayudame.so</c>,
  13. install <c>Ayudame.h</c> to e.g. <c>/usr/local/include</c>, apply the
  14. <c>tools/patch-ayudame</c> to it to fix C build, re-<c>./configure</c>, make
  15. sure that it found it, rebuild StarPU. Run the Temanejo GUI, give it the path
  16. to your application, any options you want to pass it, the path to <c>libayudame.so</c>.
  17. Make sure to specify at least the same number of CPUs in the dialog box as your
  18. machine has, otherwise an error will happen during execution. Future versions
  19. of Temanejo should be able to tell StarPU the number of CPUs to use.
  20. Tag numbers have to be below <c>4000000000000000000ULL</c> to be usable for
  21. Temanejo (so as to distinguish them from tasks).
  22. \section On-linePerformanceFeedback On-line Performance Feedback
  23. \subsection EnablingOn-linePerformanceMonitoring Enabling On-line Performance Monitoring
  24. In order to enable online performance monitoring, the application can
  25. call starpu_profiling_status_set() with the parameter
  26. ::STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring
  27. is already enabled or not by calling starpu_profiling_status_get().
  28. Enabling monitoring also reinitialize all previously collected
  29. feedback. The environment variable \ref STARPU_PROFILING can also be
  30. set to <c>1</c> to achieve the same effect.
  31. Likewise, performance monitoring is stopped by calling
  32. starpu_profiling_status_set() with the parameter
  33. ::STARPU_PROFILING_DISABLE. Note that this does not reset the
  34. performance counters so that the application may consult them later
  35. on.
  36. More details about the performance monitoring API are available in \ref API_Profiling.
  37. \subsection Per-taskFeedback Per-task Feedback
  38. If profiling is enabled, a pointer to a structure
  39. starpu_profiling_task_info is put in the field
  40. starpu_task::profiling_info when a task terminates. This structure is
  41. automatically destroyed when the task structure is destroyed, either
  42. automatically or by calling starpu_task_destroy().
  43. The structure starpu_profiling_task_info indicates the date when the
  44. task was submitted (starpu_profiling_task_info::submit_time), started
  45. (starpu_profiling_task_info::start_time), and terminated
  46. (starpu_profiling_task_info::end_time), relative to the initialization
  47. of StarPU with starpu_init(). It also specifies the identifier of the worker
  48. that has executed the task (starpu_profiling_task_info::workerid).
  49. These date are stored as <c>timespec</c> structures which the user may convert
  50. into micro-seconds using the helper function
  51. starpu_timing_timespec_to_us().
  52. It it worth noting that the application may directly access this structure from
  53. the callback executed at the end of the task. The structure starpu_task
  54. associated to the callback currently being executed is indeed accessible with
  55. the function starpu_task_get_current().
  56. \subsection Per-codeletFeedback Per-codelet Feedback
  57. The field starpu_codelet::per_worker_stats is
  58. an array of counters. The i-th entry of the array is incremented every time a
  59. task implementing the codelet is executed on the i-th worker.
  60. This array is not reinitialized when profiling is enabled or disabled.
  61. \subsection Per-workerFeedback Per-worker Feedback
  62. The second argument returned by the function
  63. starpu_profiling_worker_get_info() is a structure
  64. starpu_profiling_worker_info that gives statistics about the specified
  65. worker. This structure specifies when StarPU started collecting
  66. profiling information for that worker
  67. (starpu_profiling_worker_info::start_time), the
  68. duration of the profiling measurement interval
  69. (starpu_profiling_worker_info::total_time), the time spent executing
  70. kernels (starpu_profiling_worker_info::executing_time), the time
  71. spent sleeping because there is no task to execute at all
  72. (starpu_profiling_worker_info::sleeping_time), and the number of tasks that were executed
  73. while profiling was enabled. These values give an estimation of the
  74. proportion of time spent do real work, and the time spent either
  75. sleeping because there are not enough executable tasks or simply
  76. wasted in pure StarPU overhead.
  77. Calling starpu_profiling_worker_get_info() resets the profiling
  78. information associated to a worker.
  79. When an FxT trace is generated (see \ref GeneratingTracesWithFxT), it is also
  80. possible to use the tool <c>starpu_workers_activity</c> (see \ref
  81. MonitoringActivity) to generate a graphic showing the evolution of
  82. these values during the time, for the different workers.
  83. \subsection Bus-relatedFeedback Bus-related Feedback
  84. TODO: ajouter \ref STARPU_BUS_STATS
  85. \internal
  86. how to enable/disable performance monitoring
  87. what kind of information do we get ?
  88. \endinternal
  89. The bus speed measured by StarPU can be displayed by using the tool
  90. <c>starpu_machine_display</c>, for instance:
  91. \verbatim
  92. StarPU has found:
  93. 3 CUDA devices
  94. CUDA 0 (Tesla C2050 02:00.0)
  95. CUDA 1 (Tesla C2050 03:00.0)
  96. CUDA 2 (Tesla C2050 84:00.0)
  97. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  98. RAM 0.000000 5176.530428 5176.492994 5191.710722
  99. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  100. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  101. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  102. \endverbatim
  103. \subsection StarPU-TopInterface StarPU-Top Interface
  104. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  105. application and permits the user to change parameters on the fly.
  106. Variables to be monitored can be registered by calling the functions
  107. starpu_top_add_data_boolean(), starpu_top_add_data_integer(),
  108. starpu_top_add_data_float(), e.g.:
  109. \code{.c}
  110. starpu_top_data *data = starpu_top_add_data_integer("mynum", 0, 100, 1);
  111. \endcode
  112. The application should then call starpu_top_init_and_wait() to give its name
  113. and wait for StarPU-Top to get a start request from the user. The name is used
  114. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  115. \code{.c}
  116. starpu_top_init_and_wait("the application");
  117. \endcode
  118. The new values can then be provided thanks to
  119. starpu_top_update_data_boolean(), starpu_top_update_data_integer(),
  120. starpu_top_update_data_float(), e.g.:
  121. \code{.c}
  122. starpu_top_update_data_integer(data, mynum);
  123. \endcode
  124. Updateable parameters can be registered thanks to starpu_top_register_parameter_boolean(), starpu_top_register_parameter_integer(), starpu_top_register_parameter_float(), e.g.:
  125. \code{.c}
  126. float alpha;
  127. starpu_top_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  128. \endcode
  129. <c>modif_hook</c> is a function which will be called when the parameter is being modified, it can for instance print the new value:
  130. \code{.c}
  131. void modif_hook(struct starpu_top_param *d) {
  132. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  133. }
  134. \endcode
  135. Task schedulers should notify StarPU-Top when it has decided when a task will be
  136. scheduled, so that it can show it in its Gantt chart, for instance:
  137. \code{.c}
  138. starpu_top_task_prevision(task, workerid, begin, end);
  139. \endcode
  140. Starting StarPU-Top (StarPU-Top is started via the binary
  141. <c>starpu_top</c>.) and the application can be done two ways:
  142. <ul>
  143. <li> The application is started by hand on some machine (and thus already
  144. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  145. checkbox should be unchecked, and the hostname and port (default is 2011) on
  146. which the application is already running should be specified. Clicking on the
  147. connection button will thus connect to the already-running application.
  148. </li>
  149. <li> StarPU-Top is started first, and clicking on the connection button will
  150. start the application itself (possibly on a remote machine). The SSH checkbox
  151. should be checked, and a command line provided, e.g.:
  152. \verbatim
  153. $ ssh myserver STARPU_SCHED=dmda ./application
  154. \endverbatim
  155. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  156. \verbatim
  157. $ ssh -L 2011:localhost:2011 myserver STARPU_SCHED=dmda ./application
  158. \endverbatim
  159. and "localhost" should be used as IP Address to connect to.
  160. </li>
  161. </ul>
  162. \section Off-linePerformanceFeedback Off-line Performance Feedback
  163. \subsection GeneratingTracesWithFxT Generating Traces With FxT
  164. StarPU can use the FxT library (see
  165. https://savannah.nongnu.org/projects/fkt/) to generate traces
  166. with a limited runtime overhead.
  167. You can either get a tarball:
  168. \verbatim
  169. $ wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.11.tar.gz
  170. \endverbatim
  171. or use the FxT library from CVS (autotools are required):
  172. \verbatim
  173. $ cvs -d :pserver:anonymous\@cvs.sv.gnu.org:/sources/fkt co FxT
  174. $ ./bootstrap
  175. \endverbatim
  176. Compiling and installing the FxT library in the <c>$FXTDIR</c> path is
  177. done following the standard procedure:
  178. \verbatim
  179. $ ./configure --prefix=$FXTDIR
  180. $ make
  181. $ make install
  182. \endverbatim
  183. In order to have StarPU to generate traces, StarPU should be configured with
  184. the option \ref with-fxt "--with-fxt" :
  185. \verbatim
  186. $ ./configure --with-fxt=$FXTDIR
  187. \endverbatim
  188. Or you can simply point the <c>PKG_CONFIG_PATH</c> to
  189. <c>$FXTDIR/lib/pkgconfig</c> and pass
  190. \ref with-fxt "--with-fxt" to <c>./configure</c>
  191. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  192. starpu_shutdown(). The trace is a binary file whose name has the form
  193. <c>prof_file_XXX_YYY</c> where <c>XXX</c> is the user name, and
  194. <c>YYY</c> is the pid of the process that used StarPU. This file is saved in the
  195. <c>/tmp/</c> directory by default, or by the directory specified by
  196. the environment variable \ref STARPU_FXT_PREFIX.
  197. The additional configure option \ref enable-fxt-lock "--enable-fxt-lock" can
  198. be used to generate trace events which describes the locks behaviour during
  199. the execution.
  200. \subsection CreatingAGanttDiagram Creating a Gantt Diagram
  201. When the FxT trace file <c>filename</c> has been generated, it is possible to
  202. generate a trace in the Paje format by calling:
  203. \verbatim
  204. $ starpu_fxt_tool -i filename
  205. \endverbatim
  206. Or alternatively, setting the environment variable \ref STARPU_GENERATE_TRACE
  207. to <c>1</c> before application execution will make StarPU do it automatically at
  208. application shutdown.
  209. This will create a file <c>paje.trace</c> in the current directory that
  210. can be inspected with the <a href="http://vite.gforge.inria.fr/">ViTE trace
  211. visualizing open-source tool</a>. It is possible to open the
  212. file <c>paje.trace</c> with ViTE by using the following command:
  213. \verbatim
  214. $ vite paje.trace
  215. \endverbatim
  216. To get names of tasks instead of "unknown", fill the optional
  217. starpu_codelet::name, or use a performance model for them.
  218. In the MPI execution case, collect the trace files from the MPI nodes, and
  219. specify them all on the command <c>starpu_fxt_tool</c>, for instance:
  220. \verbatim
  221. $ starpu_fxt_tool -i filename1 -i filename2
  222. \endverbatim
  223. By default, all tasks are displayed using a green color. To display tasks with
  224. varying colors, pass option <c>-c</c> to <c>starpu_fxt_tool</c>.
  225. Traces can also be inspected by hand by using the tool <c>fxt_print</c>, for instance:
  226. \verbatim
  227. $ fxt_print -o -f filename
  228. \endverbatim
  229. Timings are in nanoseconds (while timings as seen in <c>vite</c> are in milliseconds).
  230. \subsection CreatingADAGWithGraphviz Creating a DAG With Graphviz
  231. When the FxT trace file <c>filename</c> has been generated, it is possible to
  232. generate a task graph in the DOT format by calling:
  233. \verbatim
  234. $ starpu_fxt_tool -i filename
  235. \endverbatim
  236. This will create a <c>dag.dot</c> file in the current directory. This file is a
  237. task graph described using the DOT language. It is possible to get a
  238. graphical output of the graph by using the graphviz library:
  239. \verbatim
  240. $ dot -Tpdf dag.dot -o output.pdf
  241. \endverbatim
  242. \subsection MonitoringActivity Monitoring Activity
  243. When the FxT trace file <c>filename</c> has been generated, it is possible to
  244. generate an activity trace by calling:
  245. \verbatim
  246. $ starpu_fxt_tool -i filename
  247. \endverbatim
  248. This will create a file <c>activity.data</c> in the current
  249. directory. A profile of the application showing the activity of StarPU
  250. during the execution of the program can be generated:
  251. \verbatim
  252. $ starpu_workers_activity activity.data
  253. \endverbatim
  254. This will create a file named <c>activity.eps</c> in the current directory.
  255. This picture is composed of two parts.
  256. The first part shows the activity of the different workers. The green sections
  257. indicate which proportion of the time was spent executed kernels on the
  258. processing unit. The red sections indicate the proportion of time spent in
  259. StartPU: an important overhead may indicate that the granularity may be too
  260. low, and that bigger tasks may be appropriate to use the processing unit more
  261. efficiently. The black sections indicate that the processing unit was blocked
  262. because there was no task to process: this may indicate a lack of parallelism
  263. which may be alleviated by creating more tasks when it is possible.
  264. The second part of the picture <c>activity.eps</c> is a graph showing the
  265. evolution of the number of tasks available in the system during the execution.
  266. Ready tasks are shown in black, and tasks that are submitted but not
  267. schedulable yet are shown in grey.
  268. \section PerformanceOfCodelets Performance Of Codelets
  269. The performance model of codelets (see \ref PerformanceModelExample)
  270. can be examined by using the tool <c>starpu_perfmodel_display</c>:
  271. \verbatim
  272. $ starpu_perfmodel_display -l
  273. file: <malloc_pinned.hannibal>
  274. file: <starpu_slu_lu_model_21.hannibal>
  275. file: <starpu_slu_lu_model_11.hannibal>
  276. file: <starpu_slu_lu_model_22.hannibal>
  277. file: <starpu_slu_lu_model_12.hannibal>
  278. \endverbatim
  279. Here, the codelets of the example <c>lu</c> are available. We can examine the
  280. performance of the kernel <c>22</c> (in micro-seconds), which is history-based:
  281. \verbatim
  282. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  283. performance model for cpu
  284. # hash size mean dev n
  285. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  286. performance model for cuda_0
  287. # hash size mean dev n
  288. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  289. performance model for cuda_1
  290. # hash size mean dev n
  291. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  292. performance model for cuda_2
  293. # hash size mean dev n
  294. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  295. \endverbatim
  296. We can see that for the given size, over a sample of a few hundreds of
  297. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  298. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  299. CPUs.
  300. This tool can also be used for regression-based performance models. It will then
  301. display the regression formula, and in the case of non-linear regression, the
  302. same performance log as for history-based performance models:
  303. \verbatim
  304. $ starpu_perfmodel_display -s non_linear_memset_regression_based
  305. performance model for cpu_impl_0
  306. Regression : #sample = 1400
  307. Linear: y = alpha size ^ beta
  308. alpha = 1.335973e-03
  309. beta = 8.024020e-01
  310. Non-Linear: y = a size ^b + c
  311. a = 5.429195e-04
  312. b = 8.654899e-01
  313. c = 9.009313e-01
  314. # hash size mean stddev n
  315. a3d3725e 4096 4.763200e+00 7.650928e-01 100
  316. 870a30aa 8192 1.827970e+00 2.037181e-01 100
  317. 48e988e9 16384 2.652800e+00 1.876459e-01 100
  318. 961e65d2 32768 4.255530e+00 3.518025e-01 100
  319. ...
  320. \endverbatim
  321. The same can also be achieved by using StarPU's library API, see
  322. \ref API_Performance_Model and notably the function
  323. starpu_perfmodel_load_symbol(). The source code of the tool
  324. <c>starpu_perfmodel_display</c> can be a useful example.
  325. The tool <c>starpu_perfmodel_plot</c> can be used to draw performance
  326. models. It writes a <c>.gp</c> file in the current directory, to be
  327. run with the tool <c>gnuplot</c>, which shows the corresponding curve.
  328. \image html starpu_non_linear_memset_regression_based.png
  329. \image latex starpu_non_linear_memset_regression_based.eps "" width=\textwidth
  330. When the field starpu_task::flops is set, <c>starpu_perfmodel_plot</c> can
  331. directly draw a GFlops curve, by simply adding the <c>-f</c> option:
  332. \verbatim
  333. $ starpu_perfmodel_display -f -s chol_model_11
  334. \endverbatim
  335. This will however disable displaying the regression model, for which we can not
  336. compute GFlops.
  337. When the FxT trace file <c>filename</c> has been generated, it is possible to
  338. get a profiling of each codelet by calling:
  339. \verbatim
  340. $ starpu_fxt_tool -i filename
  341. $ starpu_codelet_profile distrib.data codelet_name
  342. \endverbatim
  343. This will create profiling data files, and a <c>.gp</c> file in the current
  344. directory, which draws the distribution of codelet time over the application
  345. execution, according to data input size.
  346. This is also available in the tool <c>starpu_perfmodel_plot</c>, by passing it
  347. the fxt trace:
  348. \verbatim
  349. $ starpu_perfmodel_plot -s non_linear_memset_regression_based -i /tmp/prof_file_foo_0
  350. \endverbatim
  351. It will produce a <c>.gp</c> file which contains both the performance model
  352. curves, and the profiling measurements.
  353. If you have the statistical tool <c>R</c> installed, you can additionally use
  354. \verbatim
  355. $ starpu_codelet_histo_profile distrib.data
  356. \endverbatim
  357. Which will create one <c>.pdf</c> file per codelet and per input size, showing a
  358. histogram of the codelet execution time distribution.
  359. \section TheoreticalLowerBoundOnExecutionTime Theoretical Lower Bound On Execution Time
  360. StarPU can record a trace of what tasks are needed to complete the
  361. application, and then, by using a linear system, provide a theoretical lower
  362. bound of the execution time (i.e. with an ideal scheduling).
  363. The computed bound is not really correct when not taking into account
  364. dependencies, but for an application which have enough parallelism, it is very
  365. near to the bound computed with dependencies enabled (which takes a huge lot
  366. more time to compute), and thus provides a good-enough estimation of the ideal
  367. execution time.
  368. \ref TheoreticalLowerBoundOnExecutionTimeExample provides an example on how to
  369. use this.
  370. \section MemoryFeedback Memory Feedback
  371. It is possible to enable memory statistics. To do so, you need to pass
  372. the option \ref enable-memory-stats "--enable-memory-stats" when running <c>configure</c>. It is then
  373. possible to call the function starpu_data_display_memory_stats() to
  374. display statistics about the current data handles registered within StarPU.
  375. Moreover, statistics will be displayed at the end of the execution on
  376. data handles which have not been cleared out. This can be disabled by
  377. setting the environment variable \ref STARPU_MEMORY_STATS to <c>0</c>.
  378. For example, if you do not unregister data at the end of the complex
  379. example, you will get something similar to:
  380. \verbatim
  381. $ STARPU_MEMORY_STATS=0 ./examples/interface/complex
  382. Complex[0] = 45.00 + 12.00 i
  383. Complex[0] = 78.00 + 78.00 i
  384. Complex[0] = 45.00 + 12.00 i
  385. Complex[0] = 45.00 + 12.00 i
  386. \endverbatim
  387. \verbatim
  388. $ STARPU_MEMORY_STATS=1 ./examples/interface/complex
  389. Complex[0] = 45.00 + 12.00 i
  390. Complex[0] = 78.00 + 78.00 i
  391. Complex[0] = 45.00 + 12.00 i
  392. Complex[0] = 45.00 + 12.00 i
  393. #---------------------
  394. Memory stats:
  395. #-------
  396. Data on Node #3
  397. #-----
  398. Data : 0x553ff40
  399. Size : 16
  400. #--
  401. Data access stats
  402. /!\ Work Underway
  403. Node #0
  404. Direct access : 4
  405. Loaded (Owner) : 0
  406. Loaded (Shared) : 0
  407. Invalidated (was Owner) : 0
  408. Node #3
  409. Direct access : 0
  410. Loaded (Owner) : 0
  411. Loaded (Shared) : 1
  412. Invalidated (was Owner) : 0
  413. #-----
  414. Data : 0x5544710
  415. Size : 16
  416. #--
  417. Data access stats
  418. /!\ Work Underway
  419. Node #0
  420. Direct access : 2
  421. Loaded (Owner) : 0
  422. Loaded (Shared) : 1
  423. Invalidated (was Owner) : 1
  424. Node #3
  425. Direct access : 0
  426. Loaded (Owner) : 1
  427. Loaded (Shared) : 0
  428. Invalidated (was Owner) : 0
  429. \endverbatim
  430. \section DataStatistics Data Statistics
  431. Different data statistics can be displayed at the end of the execution
  432. of the application. To enable them, you need to pass the option
  433. \ref enable-stats "--enable-stats" when calling <c>configure</c>. When calling
  434. starpu_shutdown() various statistics will be displayed,
  435. execution, MSI cache statistics, allocation cache statistics, and data
  436. transfer statistics. The display can be disabled by setting the
  437. environment variable \ref STARPU_STATS to <c>0</c>.
  438. \verbatim
  439. $ ./examples/cholesky/cholesky_tag
  440. Computation took (in ms)
  441. 518.16
  442. Synthetic GFlops : 44.21
  443. #---------------------
  444. MSI cache stats :
  445. TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)
  446. ...
  447. \endverbatim
  448. \verbatim
  449. $ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
  450. Computation took (in ms)
  451. 518.16
  452. Synthetic GFlops : 44.21
  453. \endverbatim
  454. \internal
  455. TODO: data transfer stats are similar to the ones displayed when
  456. setting STARPU_BUS_STATS
  457. \endinternal
  458. */