| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 | 
							- /* dtgsyl.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__2 = 2;
 
- static integer c_n1 = -1;
 
- static integer c__5 = 5;
 
- static doublereal c_b14 = 0.;
 
- static integer c__1 = 1;
 
- static doublereal c_b51 = -1.;
 
- static doublereal c_b52 = 1.;
 
- /* Subroutine */ int _starpu_dtgsyl_(char *trans, integer *ijob, integer *m, integer *
 
- 	n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 
 
- 	doublereal *c__, integer *ldc, doublereal *d__, integer *ldd, 
 
- 	doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *
 
- 	scale, doublereal *dif, doublereal *work, integer *lwork, integer *
 
- 	iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, 
 
- 	    d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3, 
 
- 	    i__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k, p, q, ie, je, mb, nb, is, js, pq;
 
-     doublereal dsum;
 
-     integer ppqq;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *
 
- , doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer ifunc, linfo, lwmin;
 
-     doublereal scale2;
 
-     extern /* Subroutine */ int _starpu_dtgsy2_(char *, integer *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *, integer *);
 
-     doublereal dscale, scaloc;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     integer iround;
 
-     logical notran;
 
-     integer isolve;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTGSYL solves the generalized Sylvester equation: */
 
- /*              A * R - L * B = scale * C                 (1) */
 
- /*              D * R - L * E = scale * F */
 
- /*  where R and L are unknown m-by-n matrices, (A, D), (B, E) and */
 
- /*  (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */
 
- /*  respectively, with real entries. (A, D) and (B, E) must be in */
 
- /*  generalized (real) Schur canonical form, i.e. A, B are upper quasi */
 
- /*  triangular and D, E are upper triangular. */
 
- /*  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
 
- /*  scaling factor chosen to avoid overflow. */
 
- /*  In matrix notation (1) is equivalent to solve  Zx = scale b, where */
 
- /*  Z is defined as */
 
- /*             Z = [ kron(In, A)  -kron(B', Im) ]         (2) */
 
- /*                 [ kron(In, D)  -kron(E', Im) ]. */
 
- /*  Here Ik is the identity matrix of size k and X' is the transpose of */
 
- /*  X. kron(X, Y) is the Kronecker product between the matrices X and Y. */
 
- /*  If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, */
 
- /*  which is equivalent to solve for R and L in */
 
- /*              A' * R  + D' * L   = scale *  C           (3) */
 
- /*              R  * B' + L  * E'  = scale * (-F) */
 
- /*  This case (TRANS = 'T') is used to compute an one-norm-based estimate */
 
- /*  of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */
 
- /*  and (B,E), using DLACON. */
 
- /*  If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate */
 
- /*  of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */
 
- /*  reciprocal of the smallest singular value of Z. See [1-2] for more */
 
- /*  information. */
 
- /*  This is a level 3 BLAS algorithm. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  TRANS   (input) CHARACTER*1 */
 
- /*          = 'N', solve the generalized Sylvester equation (1). */
 
- /*          = 'T', solve the 'transposed' system (3). */
 
- /*  IJOB    (input) INTEGER */
 
- /*          Specifies what kind of functionality to be performed. */
 
- /*           =0: solve (1) only. */
 
- /*           =1: The functionality of 0 and 3. */
 
- /*           =2: The functionality of 0 and 4. */
 
- /*           =3: Only an estimate of Dif[(A,D), (B,E)] is computed. */
 
- /*               (look ahead strategy IJOB  = 1 is used). */
 
- /*           =4: Only an estimate of Dif[(A,D), (B,E)] is computed. */
 
- /*               ( DGECON on sub-systems is used ). */
 
- /*          Not referenced if TRANS = 'T'. */
 
- /*  M       (input) INTEGER */
 
- /*          The order of the matrices A and D, and the row dimension of */
 
- /*          the matrices C, F, R and L. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices B and E, and the column dimension */
 
- /*          of the matrices C, F, R and L. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA, M) */
 
- /*          The upper quasi triangular matrix A. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1, M). */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB, N) */
 
- /*          The upper quasi triangular matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1, N). */
 
- /*  C       (input/output) DOUBLE PRECISION array, dimension (LDC, N) */
 
- /*          On entry, C contains the right-hand-side of the first matrix */
 
- /*          equation in (1) or (3). */
 
- /*          On exit, if IJOB = 0, 1 or 2, C has been overwritten by */
 
- /*          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */
 
- /*          the solution achieved during the computation of the */
 
- /*          Dif-estimate. */
 
- /*  LDC     (input) INTEGER */
 
- /*          The leading dimension of the array C. LDC >= max(1, M). */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (LDD, M) */
 
- /*          The upper triangular matrix D. */
 
- /*  LDD     (input) INTEGER */
 
- /*          The leading dimension of the array D. LDD >= max(1, M). */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (LDE, N) */
 
- /*          The upper triangular matrix E. */
 
- /*  LDE     (input) INTEGER */
 
- /*          The leading dimension of the array E. LDE >= max(1, N). */
 
- /*  F       (input/output) DOUBLE PRECISION array, dimension (LDF, N) */
 
- /*          On entry, F contains the right-hand-side of the second matrix */
 
- /*          equation in (1) or (3). */
 
- /*          On exit, if IJOB = 0, 1 or 2, F has been overwritten by */
 
- /*          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */
 
- /*          the solution achieved during the computation of the */
 
- /*          Dif-estimate. */
 
- /*  LDF     (input) INTEGER */
 
- /*          The leading dimension of the array F. LDF >= max(1, M). */
 
- /*  DIF     (output) DOUBLE PRECISION */
 
- /*          On exit DIF is the reciprocal of a lower bound of the */
 
- /*          reciprocal of the Dif-function, i.e. DIF is an upper bound of */
 
- /*          Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */
 
- /*          IF IJOB = 0 or TRANS = 'T', DIF is not touched. */
 
- /*  SCALE   (output) DOUBLE PRECISION */
 
- /*          On exit SCALE is the scaling factor in (1) or (3). */
 
- /*          If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */
 
- /*          to a slightly perturbed system but the input matrices A, B, D */
 
- /*          and E have not been changed. If SCALE = 0, C and F hold the */
 
- /*          solutions R and L, respectively, to the homogeneous system */
 
- /*          with C = F = 0. Normally, SCALE = 1. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK > = 1. */
 
- /*          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (M+N+6) */
 
- /*  INFO    (output) INTEGER */
 
- /*            =0: successful exit */
 
- /*            <0: If INFO = -i, the i-th argument had an illegal value. */
 
- /*            >0: (A, D) and (B, E) have common or close eigenvalues. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 
- /*     Umea University, S-901 87 Umea, Sweden. */
 
- /*  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
 
- /*      for Solving the Generalized Sylvester Equation and Estimating the */
 
- /*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
 
- /*      Department of Computing Science, Umea University, S-901 87 Umea, */
 
- /*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
 
- /*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22, */
 
- /*      No 1, 1996. */
 
- /*  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */
 
- /*      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */
 
- /*      Appl., 15(4):1045-1060, 1994 */
 
- /*  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */
 
- /*      Condition Estimators for Solving the Generalized Sylvester */
 
- /*      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */
 
- /*      July 1989, pp 745-751. */
 
- /*  ===================================================================== */
 
- /*  Replaced various illegal calls to DCOPY by calls to DLASET. */
 
- /*  Sven Hammarling, 1/5/02. */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and test input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     c_dim1 = *ldc;
 
-     c_offset = 1 + c_dim1;
 
-     c__ -= c_offset;
 
-     d_dim1 = *ldd;
 
-     d_offset = 1 + d_dim1;
 
-     d__ -= d_offset;
 
-     e_dim1 = *lde;
 
-     e_offset = 1 + e_dim1;
 
-     e -= e_offset;
 
-     f_dim1 = *ldf;
 
-     f_offset = 1 + f_dim1;
 
-     f -= f_offset;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     notran = _starpu_lsame_(trans, "N");
 
-     lquery = *lwork == -1;
 
-     if (! notran && ! _starpu_lsame_(trans, "T")) {
 
- 	*info = -1;
 
-     } else if (notran) {
 
- 	if (*ijob < 0 || *ijob > 4) {
 
- 	    *info = -2;
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- 	if (*m <= 0) {
 
- 	    *info = -3;
 
- 	} else if (*n <= 0) {
 
- 	    *info = -4;
 
- 	} else if (*lda < max(1,*m)) {
 
- 	    *info = -6;
 
- 	} else if (*ldb < max(1,*n)) {
 
- 	    *info = -8;
 
- 	} else if (*ldc < max(1,*m)) {
 
- 	    *info = -10;
 
- 	} else if (*ldd < max(1,*m)) {
 
- 	    *info = -12;
 
- 	} else if (*lde < max(1,*n)) {
 
- 	    *info = -14;
 
- 	} else if (*ldf < max(1,*m)) {
 
- 	    *info = -16;
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- 	if (notran) {
 
- 	    if (*ijob == 1 || *ijob == 2) {
 
- /* Computing MAX */
 
- 		i__1 = 1, i__2 = (*m << 1) * *n;
 
- 		lwmin = max(i__1,i__2);
 
- 	    } else {
 
- 		lwmin = 1;
 
- 	    }
 
- 	} else {
 
- 	    lwmin = 1;
 
- 	}
 
- 	work[1] = (doublereal) lwmin;
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -20;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DTGSYL", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*m == 0 || *n == 0) {
 
- 	*scale = 1.;
 
- 	if (notran) {
 
- 	    if (*ijob != 0) {
 
- 		*dif = 0.;
 
- 	    }
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Determine optimal block sizes MB and NB */
 
-     mb = _starpu_ilaenv_(&c__2, "DTGSYL", trans, m, n, &c_n1, &c_n1);
 
-     nb = _starpu_ilaenv_(&c__5, "DTGSYL", trans, m, n, &c_n1, &c_n1);
 
-     isolve = 1;
 
-     ifunc = 0;
 
-     if (notran) {
 
- 	if (*ijob >= 3) {
 
- 	    ifunc = *ijob - 2;
 
- 	    _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc)
 
- 		    ;
 
- 	    _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
 
- 	} else if (*ijob >= 1) {
 
- 	    isolve = 2;
 
- 	}
 
-     }
 
-     if (mb <= 1 && nb <= 1 || mb >= *m && nb >= *n) {
 
- 	i__1 = isolve;
 
- 	for (iround = 1; iround <= i__1; ++iround) {
 
- /*           Use unblocked Level 2 solver */
 
- 	    dscale = 0.;
 
- 	    dsum = 1.;
 
- 	    pq = 0;
 
- 	    _starpu_dtgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb, 
 
- 		     &c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset], 
 
- 		    lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1], 
 
- 		    &pq, info);
 
- 	    if (dscale != 0.) {
 
- 		if (*ijob == 1 || *ijob == 3) {
 
- 		    *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale * 
 
- 			    sqrt(dsum));
 
- 		} else {
 
- 		    *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
 
- 		}
 
- 	    }
 
- 	    if (isolve == 2 && iround == 1) {
 
- 		if (notran) {
 
- 		    ifunc = *ijob;
 
- 		}
 
- 		scale2 = *scale;
 
- 		_starpu_dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
 
- 		_starpu_dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
 
- 		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
 
- 		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
 
- 	    } else if (isolve == 2 && iround == 2) {
 
- 		_starpu_dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
 
- 		_starpu_dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
 
- 		*scale = scale2;
 
- 	    }
 
- /* L30: */
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Determine block structure of A */
 
-     p = 0;
 
-     i__ = 1;
 
- L40:
 
-     if (i__ > *m) {
 
- 	goto L50;
 
-     }
 
-     ++p;
 
-     iwork[p] = i__;
 
-     i__ += mb;
 
-     if (i__ >= *m) {
 
- 	goto L50;
 
-     }
 
-     if (a[i__ + (i__ - 1) * a_dim1] != 0.) {
 
- 	++i__;
 
-     }
 
-     goto L40;
 
- L50:
 
-     iwork[p + 1] = *m + 1;
 
-     if (iwork[p] == iwork[p + 1]) {
 
- 	--p;
 
-     }
 
- /*     Determine block structure of B */
 
-     q = p + 1;
 
-     j = 1;
 
- L60:
 
-     if (j > *n) {
 
- 	goto L70;
 
-     }
 
-     ++q;
 
-     iwork[q] = j;
 
-     j += nb;
 
-     if (j >= *n) {
 
- 	goto L70;
 
-     }
 
-     if (b[j + (j - 1) * b_dim1] != 0.) {
 
- 	++j;
 
-     }
 
-     goto L60;
 
- L70:
 
-     iwork[q + 1] = *n + 1;
 
-     if (iwork[q] == iwork[q + 1]) {
 
- 	--q;
 
-     }
 
-     if (notran) {
 
- 	i__1 = isolve;
 
- 	for (iround = 1; iround <= i__1; ++iround) {
 
- /*           Solve (I, J)-subsystem */
 
- /*               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
 
- /*               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
 
- /*           for I = P, P - 1,..., 1; J = 1, 2,..., Q */
 
- 	    dscale = 0.;
 
- 	    dsum = 1.;
 
- 	    pq = 0;
 
- 	    *scale = 1.;
 
- 	    i__2 = q;
 
- 	    for (j = p + 2; j <= i__2; ++j) {
 
- 		js = iwork[j];
 
- 		je = iwork[j + 1] - 1;
 
- 		nb = je - js + 1;
 
- 		for (i__ = p; i__ >= 1; --i__) {
 
- 		    is = iwork[i__];
 
- 		    ie = iwork[i__ + 1] - 1;
 
- 		    mb = ie - is + 1;
 
- 		    ppqq = 0;
 
- 		    _starpu_dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], 
 
- 			    lda, &b[js + js * b_dim1], ldb, &c__[is + js * 
 
- 			    c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js 
 
- 			    + js * e_dim1], lde, &f[is + js * f_dim1], ldf, &
 
- 			    scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, &
 
- 			    linfo);
 
- 		    if (linfo > 0) {
 
- 			*info = linfo;
 
- 		    }
 
- 		    pq += ppqq;
 
- 		    if (scaloc != 1.) {
 
- 			i__3 = js - 1;
 
- 			for (k = 1; k <= i__3; ++k) {
 
- 			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 
- 			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 
- /* L80: */
 
- 			}
 
- 			i__3 = je;
 
- 			for (k = js; k <= i__3; ++k) {
 
- 			    i__4 = is - 1;
 
- 			    _starpu_dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &
 
- 				    c__1);
 
- 			    i__4 = is - 1;
 
- 			    _starpu_dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
 
- /* L90: */
 
- 			}
 
- 			i__3 = je;
 
- 			for (k = js; k <= i__3; ++k) {
 
- 			    i__4 = *m - ie;
 
- 			    _starpu_dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], 
 
- 				    &c__1);
 
- 			    i__4 = *m - ie;
 
- 			    _starpu_dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &
 
- 				    c__1);
 
- /* L100: */
 
- 			}
 
- 			i__3 = *n;
 
- 			for (k = je + 1; k <= i__3; ++k) {
 
- 			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 
- 			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 
- /* L110: */
 
- 			}
 
- 			*scale *= scaloc;
 
- 		    }
 
- /*                 Substitute R(I, J) and L(I, J) into remaining */
 
- /*                 equation. */
 
- 		    if (i__ > 1) {
 
- 			i__3 = is - 1;
 
- 			_starpu_dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &a[is * 
 
- 				a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc, 
 
- 				 &c_b52, &c__[js * c_dim1 + 1], ldc);
 
- 			i__3 = is - 1;
 
- 			_starpu_dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &d__[is * 
 
- 				d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc, 
 
- 				 &c_b52, &f[js * f_dim1 + 1], ldf);
 
- 		    }
 
- 		    if (j < q) {
 
- 			i__3 = *n - je;
 
- 			_starpu_dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
 
- 				 f_dim1], ldf, &b[js + (je + 1) * b_dim1], 
 
- 				ldb, &c_b52, &c__[is + (je + 1) * c_dim1], 
 
- 				ldc);
 
- 			i__3 = *n - je;
 
- 			_starpu_dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
 
- 				 f_dim1], ldf, &e[js + (je + 1) * e_dim1], 
 
- 				lde, &c_b52, &f[is + (je + 1) * f_dim1], ldf);
 
- 		    }
 
- /* L120: */
 
- 		}
 
- /* L130: */
 
- 	    }
 
- 	    if (dscale != 0.) {
 
- 		if (*ijob == 1 || *ijob == 3) {
 
- 		    *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale * 
 
- 			    sqrt(dsum));
 
- 		} else {
 
- 		    *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
 
- 		}
 
- 	    }
 
- 	    if (isolve == 2 && iround == 1) {
 
- 		if (notran) {
 
- 		    ifunc = *ijob;
 
- 		}
 
- 		scale2 = *scale;
 
- 		_starpu_dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
 
- 		_starpu_dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
 
- 		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
 
- 		_starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
 
- 	    } else if (isolve == 2 && iround == 2) {
 
- 		_starpu_dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
 
- 		_starpu_dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
 
- 		*scale = scale2;
 
- 	    }
 
- /* L150: */
 
- 	}
 
-     } else {
 
- /*        Solve transposed (I, J)-subsystem */
 
- /*             A(I, I)' * R(I, J)  + D(I, I)' * L(I, J)  =  C(I, J) */
 
- /*             R(I, J)  * B(J, J)' + L(I, J)  * E(J, J)' = -F(I, J) */
 
- /*        for I = 1,2,..., P; J = Q, Q-1,..., 1 */
 
- 	*scale = 1.;
 
- 	i__1 = p;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    is = iwork[i__];
 
- 	    ie = iwork[i__ + 1] - 1;
 
- 	    mb = ie - is + 1;
 
- 	    i__2 = p + 2;
 
- 	    for (j = q; j >= i__2; --j) {
 
- 		js = iwork[j];
 
- 		je = iwork[j + 1] - 1;
 
- 		nb = je - js + 1;
 
- 		_starpu_dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, &
 
- 			b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc, 
 
- 			 &d__[is + is * d_dim1], ldd, &e[js + js * e_dim1], 
 
- 			lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, &
 
- 			dscale, &iwork[q + 2], &ppqq, &linfo);
 
- 		if (linfo > 0) {
 
- 		    *info = linfo;
 
- 		}
 
- 		if (scaloc != 1.) {
 
- 		    i__3 = js - 1;
 
- 		    for (k = 1; k <= i__3; ++k) {
 
- 			_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 
- 			_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 
- /* L160: */
 
- 		    }
 
- 		    i__3 = je;
 
- 		    for (k = js; k <= i__3; ++k) {
 
- 			i__4 = is - 1;
 
- 			_starpu_dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 
- 			i__4 = is - 1;
 
- 			_starpu_dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
 
- /* L170: */
 
- 		    }
 
- 		    i__3 = je;
 
- 		    for (k = js; k <= i__3; ++k) {
 
- 			i__4 = *m - ie;
 
- 			_starpu_dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], &
 
- 				c__1);
 
- 			i__4 = *m - ie;
 
- 			_starpu_dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1)
 
- 				;
 
- /* L180: */
 
- 		    }
 
- 		    i__3 = *n;
 
- 		    for (k = je + 1; k <= i__3; ++k) {
 
- 			_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 
- 			_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 
- /* L190: */
 
- 		    }
 
- 		    *scale *= scaloc;
 
- 		}
 
- /*              Substitute R(I, J) and L(I, J) into remaining equation. */
 
- 		if (j > p + 2) {
 
- 		    i__3 = js - 1;
 
- 		    _starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &c__[is + js * 
 
- 			    c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b52, &
 
- 			    f[is + f_dim1], ldf);
 
- 		    i__3 = js - 1;
 
- 		    _starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &f[is + js * 
 
- 			    f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b52, &
 
- 			    f[is + f_dim1], ldf);
 
- 		}
 
- 		if (i__ < p) {
 
- 		    i__3 = *m - ie;
 
- 		    _starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &a[is + (ie + 1)
 
- 			     * a_dim1], lda, &c__[is + js * c_dim1], ldc, &
 
- 			    c_b52, &c__[ie + 1 + js * c_dim1], ldc);
 
- 		    i__3 = *m - ie;
 
- 		    _starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &d__[is + (ie + 
 
- 			    1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, &
 
- 			    c_b52, &c__[ie + 1 + js * c_dim1], ldc);
 
- 		}
 
- /* L200: */
 
- 	    }
 
- /* L210: */
 
- 	}
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     return 0;
 
- /*     End of DTGSYL */
 
- } /* _starpu_dtgsyl_ */
 
 
  |