| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 | 
							- /* dsytrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int _starpu_dsytrf_(char *uplo, integer *n, doublereal *a, integer *
 
- 	lda, integer *ipiv, doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer j, k, kb, nb, iws;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer nbmin, iinfo;
 
-     logical upper;
 
-     extern /* Subroutine */ int _starpu_dsytf2_(char *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *), _starpu_xerbla_(char *, integer 
 
- 	    *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlasyf_(char *, integer *, integer *, integer 
 
- 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     integer ldwork, lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSYTRF computes the factorization of a real symmetric matrix A using */
 
- /*  the Bunch-Kaufman diagonal pivoting method.  The form of the */
 
- /*  factorization is */
 
- /*     A = U*D*U**T  or  A = L*D*L**T */
 
- /*  where U (or L) is a product of permutation and unit upper (lower) */
 
- /*  triangular matrices, and D is symmetric and block diagonal with */
 
- /*  1-by-1 and 2-by-2 diagonal blocks. */
 
- /*  This is the blocked version of the algorithm, calling Level 3 BLAS. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 
- /*          N-by-N upper triangular part of A contains the upper */
 
- /*          triangular part of the matrix A, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading N-by-N lower triangular part of A contains the lower */
 
- /*          triangular part of the matrix A, and the strictly upper */
 
- /*          triangular part of A is not referenced. */
 
- /*          On exit, the block diagonal matrix D and the multipliers used */
 
- /*          to obtain the factor U or L (see below for further details). */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  IPIV    (output) INTEGER array, dimension (N) */
 
- /*          Details of the interchanges and the block structure of D. */
 
- /*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
 
- /*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
 
- /*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
 
- /*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
 
- /*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
 
- /*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
 
- /*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The length of WORK.  LWORK >=1.  For best performance */
 
- /*          LWORK >= N*NB, where NB is the block size returned by ILAENV. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization */
 
- /*                has been completed, but the block diagonal matrix D is */
 
- /*                exactly singular, and division by zero will occur if it */
 
- /*                is used to solve a system of equations. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  If UPLO = 'U', then A = U*D*U', where */
 
- /*     U = P(n)*U(n)* ... *P(k)U(k)* ..., */
 
- /*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
 
- /*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 
- /*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 
- /*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
 
- /*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 
- /*             (   I    v    0   )   k-s */
 
- /*     U(k) =  (   0    I    0   )   s */
 
- /*             (   0    0    I   )   n-k */
 
- /*                k-s   s   n-k */
 
- /*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
 
- /*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
 
- /*  and A(k,k), and v overwrites A(1:k-2,k-1:k). */
 
- /*  If UPLO = 'L', then A = L*D*L', where */
 
- /*     L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
 
- /*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
 
- /*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 
- /*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 
- /*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
 
- /*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 
- /*             (   I    0     0   )  k-1 */
 
- /*     L(k) =  (   0    I     0   )  s */
 
- /*             (   0    v     I   )  n-k-s+1 */
 
- /*                k-1   s  n-k-s+1 */
 
- /*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
 
- /*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
 
- /*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --ipiv;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     lquery = *lwork == -1;
 
-     if (! upper && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -4;
 
-     } else if (*lwork < 1 && ! lquery) {
 
- 	*info = -7;
 
-     }
 
-     if (*info == 0) {
 
- /*        Determine the block size */
 
- 	nb = _starpu_ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1);
 
- 	lwkopt = *n * nb;
 
- 	work[1] = (doublereal) lwkopt;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSYTRF", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
-     nbmin = 2;
 
-     ldwork = *n;
 
-     if (nb > 1 && nb < *n) {
 
- 	iws = ldwork * nb;
 
- 	if (*lwork < iws) {
 
- /* Computing MAX */
 
- 	    i__1 = *lwork / ldwork;
 
- 	    nb = max(i__1,1);
 
- /* Computing MAX */
 
- 	    i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DSYTRF", uplo, n, &c_n1, &c_n1, &
 
- 		    c_n1);
 
- 	    nbmin = max(i__1,i__2);
 
- 	}
 
-     } else {
 
- 	iws = 1;
 
-     }
 
-     if (nb < nbmin) {
 
- 	nb = *n;
 
-     }
 
-     if (upper) {
 
- /*        Factorize A as U*D*U' using the upper triangle of A */
 
- /*        K is the main loop index, decreasing from N to 1 in steps of */
 
- /*        KB, where KB is the number of columns factorized by DLASYF; */
 
- /*        KB is either NB or NB-1, or K for the last block */
 
- 	k = *n;
 
- L10:
 
- /*        If K < 1, exit from loop */
 
- 	if (k < 1) {
 
- 	    goto L40;
 
- 	}
 
- 	if (k > nb) {
 
- /*           Factorize columns k-kb+1:k of A and use blocked code to */
 
- /*           update columns 1:k-kb */
 
- 	    _starpu_dlasyf_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &work[1], 
 
- 		     &ldwork, &iinfo);
 
- 	} else {
 
- /*           Use unblocked code to factorize columns 1:k of A */
 
- 	    _starpu_dsytf2_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo);
 
- 	    kb = k;
 
- 	}
 
- /*        Set INFO on the first occurrence of a zero pivot */
 
- 	if (*info == 0 && iinfo > 0) {
 
- 	    *info = iinfo;
 
- 	}
 
- /*        Decrease K and return to the start of the main loop */
 
- 	k -= kb;
 
- 	goto L10;
 
-     } else {
 
- /*        Factorize A as L*D*L' using the lower triangle of A */
 
- /*        K is the main loop index, increasing from 1 to N in steps of */
 
- /*        KB, where KB is the number of columns factorized by DLASYF; */
 
- /*        KB is either NB or NB-1, or N-K+1 for the last block */
 
- 	k = 1;
 
- L20:
 
- /*        If K > N, exit from loop */
 
- 	if (k > *n) {
 
- 	    goto L40;
 
- 	}
 
- 	if (k <= *n - nb) {
 
- /*           Factorize columns k:k+kb-1 of A and use blocked code to */
 
- /*           update columns k+kb:n */
 
- 	    i__1 = *n - k + 1;
 
- 	    _starpu_dlasyf_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &ipiv[k], 
 
- 		    &work[1], &ldwork, &iinfo);
 
- 	} else {
 
- /*           Use unblocked code to factorize columns k:n of A */
 
- 	    i__1 = *n - k + 1;
 
- 	    _starpu_dsytf2_(uplo, &i__1, &a[k + k * a_dim1], lda, &ipiv[k], &iinfo);
 
- 	    kb = *n - k + 1;
 
- 	}
 
- /*        Set INFO on the first occurrence of a zero pivot */
 
- 	if (*info == 0 && iinfo > 0) {
 
- 	    *info = iinfo + k - 1;
 
- 	}
 
- /*        Adjust IPIV */
 
- 	i__1 = k + kb - 1;
 
- 	for (j = k; j <= i__1; ++j) {
 
- 	    if (ipiv[j] > 0) {
 
- 		ipiv[j] = ipiv[j] + k - 1;
 
- 	    } else {
 
- 		ipiv[j] = ipiv[j] - k + 1;
 
- 	    }
 
- /* L30: */
 
- 	}
 
- /*        Increase K and return to the start of the main loop */
 
- 	k += kb;
 
- 	goto L20;
 
-     }
 
- L40:
 
-     work[1] = (doublereal) lwkopt;
 
-     return 0;
 
- /*     End of DSYTRF */
 
- } /* _starpu_dsytrf_ */
 
 
  |