| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 | 
							- /* dsptrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b8 = 0.;
 
- static doublereal c_b14 = -1.;
 
- /* Subroutine */ int _starpu_dsptrd_(char *uplo, integer *n, doublereal *ap, 
 
- 	doublereal *d__, doublereal *e, doublereal *tau, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, i1, ii, i1i1;
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     doublereal taui;
 
-     extern /* Subroutine */ int _starpu_dspr2_(char *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *);
 
-     doublereal alpha;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *), _starpu_dspmv_(char *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	     doublereal *, integer *);
 
-     logical upper;
 
-     extern /* Subroutine */ int _starpu_dlarfg_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *), _starpu_xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPTRD reduces a real symmetric matrix A stored in packed form to */
 
- /*  symmetric tridiagonal form T by an orthogonal similarity */
 
- /*  transformation: Q**T * A * Q = T. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          A, packed columnwise in a linear array.  The j-th column of A */
 
- /*          is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
 
- /*          of A are overwritten by the corresponding elements of the */
 
- /*          tridiagonal matrix T, and the elements above the first */
 
- /*          superdiagonal, with the array TAU, represent the orthogonal */
 
- /*          matrix Q as a product of elementary reflectors; if UPLO */
 
- /*          = 'L', the diagonal and first subdiagonal of A are over- */
 
- /*          written by the corresponding elements of the tridiagonal */
 
- /*          matrix T, and the elements below the first subdiagonal, with */
 
- /*          the array TAU, represent the orthogonal matrix Q as a product */
 
- /*          of elementary reflectors. See Further Details. */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The diagonal elements of the tridiagonal matrix T: */
 
- /*          D(i) = A(i,i). */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The off-diagonal elements of the tridiagonal matrix T: */
 
- /*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The scalar factors of the elementary reflectors (see Further */
 
- /*          Details). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
 
- /*  reflectors */
 
- /*     Q = H(n-1) . . . H(2) H(1). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, */
 
- /*  overwriting A(1:i-1,i+1), and tau is stored in TAU(i). */
 
- /*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
 
- /*  reflectors */
 
- /*     Q = H(1) H(2) . . . H(n-1). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, */
 
- /*  overwriting A(i+2:n,i), and tau is stored in TAU(i). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     --tau;
 
-     --e;
 
-     --d__;
 
-     --ap;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     if (! upper && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSPTRD", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n <= 0) {
 
- 	return 0;
 
-     }
 
-     if (upper) {
 
- /*        Reduce the upper triangle of A. */
 
- /*        I1 is the index in AP of A(1,I+1). */
 
- 	i1 = *n * (*n - 1) / 2 + 1;
 
- 	for (i__ = *n - 1; i__ >= 1; --i__) {
 
- /*           Generate elementary reflector H(i) = I - tau * v * v' */
 
- /*           to annihilate A(1:i-1,i+1) */
 
- 	    _starpu_dlarfg_(&i__, &ap[i1 + i__ - 1], &ap[i1], &c__1, &taui);
 
- 	    e[i__] = ap[i1 + i__ - 1];
 
- 	    if (taui != 0.) {
 
- /*              Apply H(i) from both sides to A(1:i,1:i) */
 
- 		ap[i1 + i__ - 1] = 1.;
 
- /*              Compute  y := tau * A * v  storing y in TAU(1:i) */
 
- 		_starpu_dspmv_(uplo, &i__, &taui, &ap[1], &ap[i1], &c__1, &c_b8, &tau[
 
- 			1], &c__1);
 
- /*              Compute  w := y - 1/2 * tau * (y'*v) * v */
 
- 		alpha = taui * -.5 * _starpu_ddot_(&i__, &tau[1], &c__1, &ap[i1], &
 
- 			c__1);
 
- 		_starpu_daxpy_(&i__, &alpha, &ap[i1], &c__1, &tau[1], &c__1);
 
- /*              Apply the transformation as a rank-2 update: */
 
- /*                 A := A - v * w' - w * v' */
 
- 		_starpu_dspr2_(uplo, &i__, &c_b14, &ap[i1], &c__1, &tau[1], &c__1, &
 
- 			ap[1]);
 
- 		ap[i1 + i__ - 1] = e[i__];
 
- 	    }
 
- 	    d__[i__ + 1] = ap[i1 + i__];
 
- 	    tau[i__] = taui;
 
- 	    i1 -= i__;
 
- /* L10: */
 
- 	}
 
- 	d__[1] = ap[1];
 
-     } else {
 
- /*        Reduce the lower triangle of A. II is the index in AP of */
 
- /*        A(i,i) and I1I1 is the index of A(i+1,i+1). */
 
- 	ii = 1;
 
- 	i__1 = *n - 1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    i1i1 = ii + *n - i__ + 1;
 
- /*           Generate elementary reflector H(i) = I - tau * v * v' */
 
- /*           to annihilate A(i+2:n,i) */
 
- 	    i__2 = *n - i__;
 
- 	    _starpu_dlarfg_(&i__2, &ap[ii + 1], &ap[ii + 2], &c__1, &taui);
 
- 	    e[i__] = ap[ii + 1];
 
- 	    if (taui != 0.) {
 
- /*              Apply H(i) from both sides to A(i+1:n,i+1:n) */
 
- 		ap[ii + 1] = 1.;
 
- /*              Compute  y := tau * A * v  storing y in TAU(i:n-1) */
 
- 		i__2 = *n - i__;
 
- 		_starpu_dspmv_(uplo, &i__2, &taui, &ap[i1i1], &ap[ii + 1], &c__1, &
 
- 			c_b8, &tau[i__], &c__1);
 
- /*              Compute  w := y - 1/2 * tau * (y'*v) * v */
 
- 		i__2 = *n - i__;
 
- 		alpha = taui * -.5 * _starpu_ddot_(&i__2, &tau[i__], &c__1, &ap[ii + 
 
- 			1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_daxpy_(&i__2, &alpha, &ap[ii + 1], &c__1, &tau[i__], &c__1);
 
- /*              Apply the transformation as a rank-2 update: */
 
- /*                 A := A - v * w' - w * v' */
 
- 		i__2 = *n - i__;
 
- 		_starpu_dspr2_(uplo, &i__2, &c_b14, &ap[ii + 1], &c__1, &tau[i__], &
 
- 			c__1, &ap[i1i1]);
 
- 		ap[ii + 1] = e[i__];
 
- 	    }
 
- 	    d__[i__] = ap[ii];
 
- 	    tau[i__] = taui;
 
- 	    ii = i1i1;
 
- /* L20: */
 
- 	}
 
- 	d__[*n] = ap[ii];
 
-     }
 
-     return 0;
 
- /*     End of DSPTRD */
 
- } /* _starpu_dsptrd_ */
 
 
  |