| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419 | 
							- /* dsposv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b10 = -1.;
 
- static doublereal c_b11 = 1.;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu__starpu_dsposv_(char *uplo, integer *n, integer *nrhs, 
 
- 	doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
 
- 	x, integer *ldx, doublereal *work, real *swork, integer *iter, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset, 
 
- 	    x_dim1, x_offset, i__1;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__;
 
-     doublereal cte, eps, anrm;
 
-     integer ptsa;
 
-     doublereal rnrm, xnrm;
 
-     integer ptsx;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer iiter;
 
-     extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *), _starpu_dsymm_(char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *), _starpu_dlag2s_(integer *, integer *, doublereal *, 
 
- 	    integer *, real *, integer *, integer *), _starpu_slag2d_(integer *, 
 
- 	    integer *, real *, integer *, doublereal *, integer *, integer *),
 
- 	     _starpu_dlat2s_(char *, integer *, doublereal *, integer *, real *, 
 
- 	    integer *, integer *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *);
 
-     extern doublereal _starpu_dlansy_(char *, char *, integer *, doublereal *, 
 
- 	    integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dpotrf_(char *, integer *, doublereal *, 
 
- 	    integer *, integer *), _starpu_dpotrs_(char *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, integer *), _starpu_spotrf_(char *, integer *, real *, integer *, integer *), _starpu_spotrs_(char *, integer *, integer *, real *, integer *, 
 
- 	    real *, integer *, integer *);
 
- /*  -- LAPACK PROTOTYPE driver routine (version 3.1.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
 
- /*     May 2007 */
 
- /*     .. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPOSV computes the solution to a real system of linear equations */
 
- /*     A * X = B, */
 
- /*  where A is an N-by-N symmetric positive definite matrix and X and B */
 
- /*  are N-by-NRHS matrices. */
 
- /*  DSPOSV first attempts to factorize the matrix in SINGLE PRECISION */
 
- /*  and use this factorization within an iterative refinement procedure */
 
- /*  to produce a solution with DOUBLE PRECISION normwise backward error */
 
- /*  quality (see below). If the approach fails the method switches to a */
 
- /*  DOUBLE PRECISION factorization and solve. */
 
- /*  The iterative refinement is not going to be a winning strategy if */
 
- /*  the ratio SINGLE PRECISION performance over DOUBLE PRECISION */
 
- /*  performance is too small. A reasonable strategy should take the */
 
- /*  number of right-hand sides and the size of the matrix into account. */
 
- /*  This might be done with a call to ILAENV in the future. Up to now, we */
 
- /*  always try iterative refinement. */
 
- /*  The iterative refinement process is stopped if */
 
- /*      ITER > ITERMAX */
 
- /*  or for all the RHS we have: */
 
- /*      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX */
 
- /*  where */
 
- /*      o ITER is the number of the current iteration in the iterative */
 
- /*        refinement process */
 
- /*      o RNRM is the infinity-norm of the residual */
 
- /*      o XNRM is the infinity-norm of the solution */
 
- /*      o ANRM is the infinity-operator-norm of the matrix A */
 
- /*      o EPS is the machine epsilon returned by DLAMCH('Epsilon') */
 
- /*  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 */
 
- /*  respectively. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  A       (input or input/ouptut) DOUBLE PRECISION array, */
 
- /*          dimension (LDA,N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 
- /*          N-by-N upper triangular part of A contains the upper */
 
- /*          triangular part of the matrix A, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading N-by-N lower triangular part of A contains the lower */
 
- /*          triangular part of the matrix A, and the strictly upper */
 
- /*          triangular part of A is not referenced. */
 
- /*          On exit, if iterative refinement has been successfully used */
 
- /*          (INFO.EQ.0 and ITER.GE.0, see description below), then A is */
 
- /*          unchanged, if double precision factorization has been used */
 
- /*          (INFO.EQ.0 and ITER.LT.0, see description below), then the */
 
- /*          array A contains the factor U or L from the Cholesky */
 
- /*          factorization A = U**T*U or A = L*L**T. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          The N-by-NRHS right hand side matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          If INFO = 0, the N-by-NRHS solution matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N*NRHS) */
 
- /*          This array is used to hold the residual vectors. */
 
- /*  SWORK   (workspace) REAL array, dimension (N*(N+NRHS)) */
 
- /*          This array is used to use the single precision matrix and the */
 
- /*          right-hand sides or solutions in single precision. */
 
- /*  ITER    (output) INTEGER */
 
- /*          < 0: iterative refinement has failed, double precision */
 
- /*               factorization has been performed */
 
- /*               -1 : the routine fell back to full precision for */
 
- /*                    implementation- or machine-specific reasons */
 
- /*               -2 : narrowing the precision induced an overflow, */
 
- /*                    the routine fell back to full precision */
 
- /*               -3 : failure of SPOTRF */
 
- /*               -31: stop the iterative refinement after the 30th */
 
- /*                    iterations */
 
- /*          > 0: iterative refinement has been sucessfully used. */
 
- /*               Returns the number of iterations */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the leading minor of order i of (DOUBLE */
 
- /*                PRECISION) A is not positive definite, so the */
 
- /*                factorization could not be completed, and the solution */
 
- /*                has not been computed. */
 
- /*  ========= */
 
- /*     .. Parameters .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     work_dim1 = *n;
 
-     work_offset = 1 + work_dim1;
 
-     work -= work_offset;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --swork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     *iter = 0;
 
- /*     Test the input parameters. */
 
-     if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldx < max(1,*n)) {
 
- 	*info = -9;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSPOSV", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if (N.EQ.0). */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Skip single precision iterative refinement if a priori slower */
 
- /*     than double precision factorization. */
 
-     if (FALSE_) {
 
- 	*iter = -1;
 
- 	goto L40;
 
-     }
 
- /*     Compute some constants. */
 
-     anrm = _starpu_dlansy_("I", uplo, n, &a[a_offset], lda, &work[work_offset]);
 
-     eps = _starpu_dlamch_("Epsilon");
 
-     cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;
 
- /*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */
 
-     ptsa = 1;
 
-     ptsx = ptsa + *n * *n;
 
- /*     Convert B from double precision to single precision and store the */
 
- /*     result in SX. */
 
-     _starpu_dlag2s_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);
 
-     if (*info != 0) {
 
- 	*iter = -2;
 
- 	goto L40;
 
-     }
 
- /*     Convert A from double precision to single precision and store the */
 
- /*     result in SA. */
 
-     _starpu_dlat2s_(uplo, n, &a[a_offset], lda, &swork[ptsa], n, info);
 
-     if (*info != 0) {
 
- 	*iter = -2;
 
- 	goto L40;
 
-     }
 
- /*     Compute the Cholesky factorization of SA. */
 
-     _starpu_spotrf_(uplo, n, &swork[ptsa], n, info);
 
-     if (*info != 0) {
 
- 	*iter = -3;
 
- 	goto L40;
 
-     }
 
- /*     Solve the system SA*SX = SB. */
 
-     _starpu_spotrs_(uplo, n, nrhs, &swork[ptsa], n, &swork[ptsx], n, info);
 
- /*     Convert SX back to double precision */
 
-     _starpu_slag2d_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);
 
- /*     Compute R = B - AX (R is WORK). */
 
-     _starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
 
-     _starpu_dsymm_("Left", uplo, n, nrhs, &c_b10, &a[a_offset], lda, &x[x_offset], 
 
- 	    ldx, &c_b11, &work[work_offset], n);
 
- /*     Check whether the NRHS normwise backward errors satisfy the */
 
- /*     stopping criterion. If yes, set ITER=0 and return. */
 
-     i__1 = *nrhs;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	xnrm = (d__1 = x[_starpu_idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * 
 
- 		x_dim1], abs(d__1));
 
- 	rnrm = (d__1 = work[_starpu_idamax_(n, &work[i__ * work_dim1 + 1], &c__1) + 
 
- 		i__ * work_dim1], abs(d__1));
 
- 	if (rnrm > xnrm * cte) {
 
- 	    goto L10;
 
- 	}
 
-     }
 
- /*     If we are here, the NRHS normwise backward errors satisfy the */
 
- /*     stopping criterion. We are good to exit. */
 
-     *iter = 0;
 
-     return 0;
 
- L10:
 
-     for (iiter = 1; iiter <= 30; ++iiter) {
 
- /*        Convert R (in WORK) from double precision to single precision */
 
- /*        and store the result in SX. */
 
- 	_starpu_dlag2s_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);
 
- 	if (*info != 0) {
 
- 	    *iter = -2;
 
- 	    goto L40;
 
- 	}
 
- /*        Solve the system SA*SX = SR. */
 
- 	_starpu_spotrs_(uplo, n, nrhs, &swork[ptsa], n, &swork[ptsx], n, info);
 
- /*        Convert SX back to double precision and update the current */
 
- /*        iterate. */
 
- 	_starpu_slag2d_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);
 
- 	i__1 = *nrhs;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    _starpu_daxpy_(n, &c_b11, &work[i__ * work_dim1 + 1], &c__1, &x[i__ * 
 
- 		    x_dim1 + 1], &c__1);
 
- 	}
 
- /*        Compute R = B - AX (R is WORK). */
 
- 	_starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
 
- 	_starpu_dsymm_("L", uplo, n, nrhs, &c_b10, &a[a_offset], lda, &x[x_offset], 
 
- 		ldx, &c_b11, &work[work_offset], n);
 
- /*        Check whether the NRHS normwise backward errors satisfy the */
 
- /*        stopping criterion. If yes, set ITER=IITER>0 and return. */
 
- 	i__1 = *nrhs;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    xnrm = (d__1 = x[_starpu_idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * 
 
- 		    x_dim1], abs(d__1));
 
- 	    rnrm = (d__1 = work[_starpu_idamax_(n, &work[i__ * work_dim1 + 1], &c__1) 
 
- 		    + i__ * work_dim1], abs(d__1));
 
- 	    if (rnrm > xnrm * cte) {
 
- 		goto L20;
 
- 	    }
 
- 	}
 
- /*        If we are here, the NRHS normwise backward errors satisfy the */
 
- /*        stopping criterion, we are good to exit. */
 
- 	*iter = iiter;
 
- 	return 0;
 
- L20:
 
- /* L30: */
 
- 	;
 
-     }
 
- /*     If we are at this place of the code, this is because we have */
 
- /*     performed ITER=ITERMAX iterations and never satisified the */
 
- /*     stopping criterion, set up the ITER flag accordingly and follow */
 
- /*     up on double precision routine. */
 
-     *iter = -31;
 
- L40:
 
- /*     Single-precision iterative refinement failed to converge to a */
 
- /*     satisfactory solution, so we resort to double precision. */
 
-     _starpu_dpotrf_(uplo, n, &a[a_offset], lda, info);
 
-     if (*info != 0) {
 
- 	return 0;
 
-     }
 
-     _starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 
-     _starpu_dpotrs_(uplo, n, nrhs, &a[a_offset], lda, &x[x_offset], ldx, info);
 
-     return 0;
 
- /*     End of DSPOSV. */
 
- } /* _starpu__starpu_dsposv_ */
 
 
  |