| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 | 
							- /* dspevd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dspevd_(char *jobz, char *uplo, integer *n, doublereal *
 
- 	ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 
 
- 	integer *lwork, integer *iwork, integer *liwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal eps;
 
-     integer inde;
 
-     doublereal anrm, rmin, rmax;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     doublereal sigma;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer iinfo, lwmin;
 
-     logical wantz;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     integer iscale;
 
-     extern /* Subroutine */ int _starpu_dstedc_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *, integer *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     extern doublereal _starpu_dlansp_(char *, char *, integer *, doublereal *, 
 
- 	    doublereal *);
 
-     integer indtau;
 
-     extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *, 
 
- 	     integer *);
 
-     integer indwrk, liwmin;
 
-     extern /* Subroutine */ int _starpu_dsptrd_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *), 
 
- 	    _starpu_dopmtr_(char *, char *, char *, integer *, integer *, doublereal *
 
- , doublereal *, doublereal *, integer *, doublereal *, integer *);
 
-     integer llwork;
 
-     doublereal smlnum;
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPEVD computes all the eigenvalues and, optionally, eigenvectors */
 
- /*  of a real symmetric matrix A in packed storage. If eigenvectors are */
 
- /*  desired, it uses a divide and conquer algorithm. */
 
- /*  The divide and conquer algorithm makes very mild assumptions about */
 
- /*  floating point arithmetic. It will work on machines with a guard */
 
- /*  digit in add/subtract, or on those binary machines without guard */
 
- /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 
- /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          A, packed columnwise in a linear array.  The j-th column of A */
 
- /*          is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          On exit, AP is overwritten by values generated during the */
 
- /*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
 
- /*          and first superdiagonal of the tridiagonal matrix T overwrite */
 
- /*          the corresponding elements of A, and if UPLO = 'L', the */
 
- /*          diagonal and first subdiagonal of T overwrite the */
 
- /*          corresponding elements of A. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, the eigenvalues in ascending order. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
 
- /*          eigenvectors of the matrix A, with the i-th column of Z */
 
- /*          holding the eigenvector associated with W(i). */
 
- /*          If JOBZ = 'N', then Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= max(1,N). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, */
 
- /*                                         dimension (LWORK) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the required LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          If N <= 1,               LWORK must be at least 1. */
 
- /*          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. */
 
- /*          If JOBZ = 'V' and N > 1, LWORK must be at least */
 
- /*                                                 1 + 6*N + N**2. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the required sizes of the WORK and IWORK */
 
- /*          arrays, returns these values as the first entries of the WORK */
 
- /*          and IWORK arrays, and no error message related to LWORK or */
 
- /*          LIWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK. */
 
- /*          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1. */
 
- /*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the required sizes of the WORK and */
 
- /*          IWORK arrays, returns these values as the first entries of */
 
- /*          the WORK and IWORK arrays, and no error message related to */
 
- /*          LWORK or LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = i, the algorithm failed to converge; i */
 
- /*                off-diagonal elements of an intermediate tridiagonal */
 
- /*                form did not converge to zero. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --w;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantz = _starpu_lsame_(jobz, "V");
 
-     lquery = *lwork == -1 || *liwork == -1;
 
-     *info = 0;
 
-     if (! (wantz || _starpu_lsame_(jobz, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (_starpu_lsame_(uplo, "U") || _starpu_lsame_(uplo, 
 
- 	    "L"))) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*ldz < 1 || wantz && *ldz < *n) {
 
- 	*info = -7;
 
-     }
 
-     if (*info == 0) {
 
- 	if (*n <= 1) {
 
- 	    liwmin = 1;
 
- 	    lwmin = 1;
 
- 	} else {
 
- 	    if (wantz) {
 
- 		liwmin = *n * 5 + 3;
 
- /* Computing 2nd power */
 
- 		i__1 = *n;
 
- 		lwmin = *n * 6 + 1 + i__1 * i__1;
 
- 	    } else {
 
- 		liwmin = 1;
 
- 		lwmin = *n << 1;
 
- 	    }
 
- 	}
 
- 	iwork[1] = liwmin;
 
- 	work[1] = (doublereal) lwmin;
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -9;
 
- 	} else if (*liwork < liwmin && ! lquery) {
 
- 	    *info = -11;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSPEVD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	w[1] = ap[1];
 
- 	if (wantz) {
 
- 	    z__[z_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Get machine constants. */
 
-     safmin = _starpu_dlamch_("Safe minimum");
 
-     eps = _starpu_dlamch_("Precision");
 
-     smlnum = safmin / eps;
 
-     bignum = 1. / smlnum;
 
-     rmin = sqrt(smlnum);
 
-     rmax = sqrt(bignum);
 
- /*     Scale matrix to allowable range, if necessary. */
 
-     anrm = _starpu_dlansp_("M", uplo, n, &ap[1], &work[1]);
 
-     iscale = 0;
 
-     if (anrm > 0. && anrm < rmin) {
 
- 	iscale = 1;
 
- 	sigma = rmin / anrm;
 
-     } else if (anrm > rmax) {
 
- 	iscale = 1;
 
- 	sigma = rmax / anrm;
 
-     }
 
-     if (iscale == 1) {
 
- 	i__1 = *n * (*n + 1) / 2;
 
- 	_starpu_dscal_(&i__1, &sigma, &ap[1], &c__1);
 
-     }
 
- /*     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */
 
-     inde = 1;
 
-     indtau = inde + *n;
 
-     _starpu_dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);
 
- /*     For eigenvalues only, call DSTERF.  For eigenvectors, first call */
 
- /*     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
 
- /*     tridiagonal matrix, then call DOPMTR to multiply it by the */
 
- /*     Householder transformations represented in AP. */
 
-     if (! wantz) {
 
- 	_starpu_dsterf_(n, &w[1], &work[inde], info);
 
-     } else {
 
- 	indwrk = indtau + *n;
 
- 	llwork = *lwork - indwrk + 1;
 
- 	_starpu_dstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk]
 
- , &llwork, &iwork[1], liwork, info);
 
- 	_starpu_dopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], 
 
- 		ldz, &work[indwrk], &iinfo);
 
-     }
 
- /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 
-     if (iscale == 1) {
 
- 	d__1 = 1. / sigma;
 
- 	_starpu_dscal_(n, &d__1, &w[1], &c__1);
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     return 0;
 
- /*     End of DSPEVD */
 
- } /* _starpu_dspevd_ */
 
 
  |