| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 | 
							- /* dlasr.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlasr_(char *side, char *pivot, char *direct, integer *m, 
 
- 	 integer *n, doublereal *c__, doublereal *s, doublereal *a, integer *
 
- 	lda)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, j, info;
 
-     doublereal temp;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal ctemp, stemp;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASR applies a sequence of plane rotations to a real matrix A, */
 
- /*  from either the left or the right. */
 
- /*  When SIDE = 'L', the transformation takes the form */
 
- /*     A := P*A */
 
- /*  and when SIDE = 'R', the transformation takes the form */
 
- /*     A := A*P**T */
 
- /*  where P is an orthogonal matrix consisting of a sequence of z plane */
 
- /*  rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', */
 
- /*  and P**T is the transpose of P. */
 
- /*  When DIRECT = 'F' (Forward sequence), then */
 
- /*     P = P(z-1) * ... * P(2) * P(1) */
 
- /*  and when DIRECT = 'B' (Backward sequence), then */
 
- /*     P = P(1) * P(2) * ... * P(z-1) */
 
- /*  where P(k) is a plane rotation matrix defined by the 2-by-2 rotation */
 
- /*     R(k) = (  c(k)  s(k) ) */
 
- /*          = ( -s(k)  c(k) ). */
 
- /*  When PIVOT = 'V' (Variable pivot), the rotation is performed */
 
- /*  for the plane (k,k+1), i.e., P(k) has the form */
 
- /*     P(k) = (  1                                            ) */
 
- /*            (       ...                                     ) */
 
- /*            (              1                                ) */
 
- /*            (                   c(k)  s(k)                  ) */
 
- /*            (                  -s(k)  c(k)                  ) */
 
- /*            (                                1              ) */
 
- /*            (                                     ...       ) */
 
- /*            (                                            1  ) */
 
- /*  where R(k) appears as a rank-2 modification to the identity matrix in */
 
- /*  rows and columns k and k+1. */
 
- /*  When PIVOT = 'T' (Top pivot), the rotation is performed for the */
 
- /*  plane (1,k+1), so P(k) has the form */
 
- /*     P(k) = (  c(k)                    s(k)                 ) */
 
- /*            (         1                                     ) */
 
- /*            (              ...                              ) */
 
- /*            (                     1                         ) */
 
- /*            ( -s(k)                    c(k)                 ) */
 
- /*            (                                 1             ) */
 
- /*            (                                      ...      ) */
 
- /*            (                                             1 ) */
 
- /*  where R(k) appears in rows and columns 1 and k+1. */
 
- /*  Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is */
 
- /*  performed for the plane (k,z), giving P(k) the form */
 
- /*     P(k) = ( 1                                             ) */
 
- /*            (      ...                                      ) */
 
- /*            (             1                                 ) */
 
- /*            (                  c(k)                    s(k) ) */
 
- /*            (                         1                     ) */
 
- /*            (                              ...              ) */
 
- /*            (                                     1         ) */
 
- /*            (                 -s(k)                    c(k) ) */
 
- /*  where R(k) appears in rows and columns k and z.  The rotations are */
 
- /*  performed without ever forming P(k) explicitly. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  SIDE    (input) CHARACTER*1 */
 
- /*          Specifies whether the plane rotation matrix P is applied to */
 
- /*          A on the left or the right. */
 
- /*          = 'L':  Left, compute A := P*A */
 
- /*          = 'R':  Right, compute A:= A*P**T */
 
- /*  PIVOT   (input) CHARACTER*1 */
 
- /*          Specifies the plane for which P(k) is a plane rotation */
 
- /*          matrix. */
 
- /*          = 'V':  Variable pivot, the plane (k,k+1) */
 
- /*          = 'T':  Top pivot, the plane (1,k+1) */
 
- /*          = 'B':  Bottom pivot, the plane (k,z) */
 
- /*  DIRECT  (input) CHARACTER*1 */
 
- /*          Specifies whether P is a forward or backward sequence of */
 
- /*          plane rotations. */
 
- /*          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1) */
 
- /*          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1) */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  If m <= 1, an immediate */
 
- /*          return is effected. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  If n <= 1, an */
 
- /*          immediate return is effected. */
 
- /*  C       (input) DOUBLE PRECISION array, dimension */
 
- /*                  (M-1) if SIDE = 'L' */
 
- /*                  (N-1) if SIDE = 'R' */
 
- /*          The cosines c(k) of the plane rotations. */
 
- /*  S       (input) DOUBLE PRECISION array, dimension */
 
- /*                  (M-1) if SIDE = 'L' */
 
- /*                  (N-1) if SIDE = 'R' */
 
- /*          The sines s(k) of the plane rotations.  The 2-by-2 plane */
 
- /*          rotation part of the matrix P(k), R(k), has the form */
 
- /*          R(k) = (  c(k)  s(k) ) */
 
- /*                 ( -s(k)  c(k) ). */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          The M-by-N matrix A.  On exit, A is overwritten by P*A if */
 
- /*          SIDE = 'R' or by A*P**T if SIDE = 'L'. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     --c__;
 
-     --s;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     /* Function Body */
 
-     info = 0;
 
-     if (! (_starpu_lsame_(side, "L") || _starpu_lsame_(side, "R"))) {
 
- 	info = 1;
 
-     } else if (! (_starpu_lsame_(pivot, "V") || _starpu_lsame_(pivot, 
 
- 	    "T") || _starpu_lsame_(pivot, "B"))) {
 
- 	info = 2;
 
-     } else if (! (_starpu_lsame_(direct, "F") || _starpu_lsame_(direct, 
 
- 	    "B"))) {
 
- 	info = 3;
 
-     } else if (*m < 0) {
 
- 	info = 4;
 
-     } else if (*n < 0) {
 
- 	info = 5;
 
-     } else if (*lda < max(1,*m)) {
 
- 	info = 9;
 
-     }
 
-     if (info != 0) {
 
- 	_starpu_xerbla_("DLASR ", &info);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*m == 0 || *n == 0) {
 
- 	return 0;
 
-     }
 
-     if (_starpu_lsame_(side, "L")) {
 
- /*        Form  P * A */
 
- 	if (_starpu_lsame_(pivot, "V")) {
 
- 	    if (_starpu_lsame_(direct, "F")) {
 
- 		i__1 = *m - 1;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__2 = *n;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    temp = a[j + 1 + i__ * a_dim1];
 
- 			    a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * 
 
- 				    a[j + i__ * a_dim1];
 
- 			    a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j 
 
- 				    + i__ * a_dim1];
 
- /* L10: */
 
- 			}
 
- 		    }
 
- /* L20: */
 
- 		}
 
- 	    } else if (_starpu_lsame_(direct, "B")) {
 
- 		for (j = *m - 1; j >= 1; --j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__1 = *n;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    temp = a[j + 1 + i__ * a_dim1];
 
- 			    a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * 
 
- 				    a[j + i__ * a_dim1];
 
- 			    a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j 
 
- 				    + i__ * a_dim1];
 
- /* L30: */
 
- 			}
 
- 		    }
 
- /* L40: */
 
- 		}
 
- 	    }
 
- 	} else if (_starpu_lsame_(pivot, "T")) {
 
- 	    if (_starpu_lsame_(direct, "F")) {
 
- 		i__1 = *m;
 
- 		for (j = 2; j <= i__1; ++j) {
 
- 		    ctemp = c__[j - 1];
 
- 		    stemp = s[j - 1];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__2 = *n;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    temp = a[j + i__ * a_dim1];
 
- 			    a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
 
- 				    i__ * a_dim1 + 1];
 
- 			    a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
 
- 				    i__ * a_dim1 + 1];
 
- /* L50: */
 
- 			}
 
- 		    }
 
- /* L60: */
 
- 		}
 
- 	    } else if (_starpu_lsame_(direct, "B")) {
 
- 		for (j = *m; j >= 2; --j) {
 
- 		    ctemp = c__[j - 1];
 
- 		    stemp = s[j - 1];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__1 = *n;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    temp = a[j + i__ * a_dim1];
 
- 			    a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
 
- 				    i__ * a_dim1 + 1];
 
- 			    a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
 
- 				    i__ * a_dim1 + 1];
 
- /* L70: */
 
- 			}
 
- 		    }
 
- /* L80: */
 
- 		}
 
- 	    }
 
- 	} else if (_starpu_lsame_(pivot, "B")) {
 
- 	    if (_starpu_lsame_(direct, "F")) {
 
- 		i__1 = *m - 1;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__2 = *n;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    temp = a[j + i__ * a_dim1];
 
- 			    a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
 
- 				     + ctemp * temp;
 
- 			    a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * 
 
- 				    a_dim1] - stemp * temp;
 
- /* L90: */
 
- 			}
 
- 		    }
 
- /* L100: */
 
- 		}
 
- 	    } else if (_starpu_lsame_(direct, "B")) {
 
- 		for (j = *m - 1; j >= 1; --j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__1 = *n;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    temp = a[j + i__ * a_dim1];
 
- 			    a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
 
- 				     + ctemp * temp;
 
- 			    a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * 
 
- 				    a_dim1] - stemp * temp;
 
- /* L110: */
 
- 			}
 
- 		    }
 
- /* L120: */
 
- 		}
 
- 	    }
 
- 	}
 
-     } else if (_starpu_lsame_(side, "R")) {
 
- /*        Form A * P' */
 
- 	if (_starpu_lsame_(pivot, "V")) {
 
- 	    if (_starpu_lsame_(direct, "F")) {
 
- 		i__1 = *n - 1;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    temp = a[i__ + (j + 1) * a_dim1];
 
- 			    a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
 
- 				     a[i__ + j * a_dim1];
 
- 			    a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
 
- 				    i__ + j * a_dim1];
 
- /* L130: */
 
- 			}
 
- 		    }
 
- /* L140: */
 
- 		}
 
- 	    } else if (_starpu_lsame_(direct, "B")) {
 
- 		for (j = *n - 1; j >= 1; --j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__1 = *m;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    temp = a[i__ + (j + 1) * a_dim1];
 
- 			    a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
 
- 				     a[i__ + j * a_dim1];
 
- 			    a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
 
- 				    i__ + j * a_dim1];
 
- /* L150: */
 
- 			}
 
- 		    }
 
- /* L160: */
 
- 		}
 
- 	    }
 
- 	} else if (_starpu_lsame_(pivot, "T")) {
 
- 	    if (_starpu_lsame_(direct, "F")) {
 
- 		i__1 = *n;
 
- 		for (j = 2; j <= i__1; ++j) {
 
- 		    ctemp = c__[j - 1];
 
- 		    stemp = s[j - 1];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    temp = a[i__ + j * a_dim1];
 
- 			    a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
 
- 				    i__ + a_dim1];
 
- 			    a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + 
 
- 				    a_dim1];
 
- /* L170: */
 
- 			}
 
- 		    }
 
- /* L180: */
 
- 		}
 
- 	    } else if (_starpu_lsame_(direct, "B")) {
 
- 		for (j = *n; j >= 2; --j) {
 
- 		    ctemp = c__[j - 1];
 
- 		    stemp = s[j - 1];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__1 = *m;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    temp = a[i__ + j * a_dim1];
 
- 			    a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
 
- 				    i__ + a_dim1];
 
- 			    a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + 
 
- 				    a_dim1];
 
- /* L190: */
 
- 			}
 
- 		    }
 
- /* L200: */
 
- 		}
 
- 	    }
 
- 	} else if (_starpu_lsame_(pivot, "B")) {
 
- 	    if (_starpu_lsame_(direct, "F")) {
 
- 		i__1 = *n - 1;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    temp = a[i__ + j * a_dim1];
 
- 			    a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
 
- 				     + ctemp * temp;
 
- 			    a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * 
 
- 				    a_dim1] - stemp * temp;
 
- /* L210: */
 
- 			}
 
- 		    }
 
- /* L220: */
 
- 		}
 
- 	    } else if (_starpu_lsame_(direct, "B")) {
 
- 		for (j = *n - 1; j >= 1; --j) {
 
- 		    ctemp = c__[j];
 
- 		    stemp = s[j];
 
- 		    if (ctemp != 1. || stemp != 0.) {
 
- 			i__1 = *m;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    temp = a[i__ + j * a_dim1];
 
- 			    a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
 
- 				     + ctemp * temp;
 
- 			    a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * 
 
- 				    a_dim1] - stemp * temp;
 
- /* L230: */
 
- 			}
 
- 		    }
 
- /* L240: */
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLASR */
 
- } /* _starpu_dlasr_ */
 
 
  |