| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 | 
							- /* dlascl.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlascl_(char *type__, integer *kl, integer *ku, 
 
- 	doublereal *cfrom, doublereal *cto, integer *m, integer *n, 
 
- 	doublereal *a, integer *lda, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
 
-     /* Local variables */
 
-     integer i__, j, k1, k2, k3, k4;
 
-     doublereal mul, cto1;
 
-     logical done;
 
-     doublereal ctoc;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer itype;
 
-     doublereal cfrom1;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal cfromc;
 
-     extern logical _starpu_disnan_(doublereal *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum, smlnum;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASCL multiplies the M by N real matrix A by the real scalar */
 
- /*  CTO/CFROM.  This is done without over/underflow as long as the final */
 
- /*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
 
- /*  A may be full, upper triangular, lower triangular, upper Hessenberg, */
 
- /*  or banded. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  TYPE    (input) CHARACTER*1 */
 
- /*          TYPE indices the storage type of the input matrix. */
 
- /*          = 'G':  A is a full matrix. */
 
- /*          = 'L':  A is a lower triangular matrix. */
 
- /*          = 'U':  A is an upper triangular matrix. */
 
- /*          = 'H':  A is an upper Hessenberg matrix. */
 
- /*          = 'B':  A is a symmetric band matrix with lower bandwidth KL */
 
- /*                  and upper bandwidth KU and with the only the lower */
 
- /*                  half stored. */
 
- /*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL */
 
- /*                  and upper bandwidth KU and with the only the upper */
 
- /*                  half stored. */
 
- /*          = 'Z':  A is a band matrix with lower bandwidth KL and upper */
 
- /*                  bandwidth KU. */
 
- /*  KL      (input) INTEGER */
 
- /*          The lower bandwidth of A.  Referenced only if TYPE = 'B', */
 
- /*          'Q' or 'Z'. */
 
- /*  KU      (input) INTEGER */
 
- /*          The upper bandwidth of A.  Referenced only if TYPE = 'B', */
 
- /*          'Q' or 'Z'. */
 
- /*  CFROM   (input) DOUBLE PRECISION */
 
- /*  CTO     (input) DOUBLE PRECISION */
 
- /*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
 
- /*          without over/underflow if the final result CTO*A(I,J)/CFROM */
 
- /*          can be represented without over/underflow.  CFROM must be */
 
- /*          nonzero. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the */
 
- /*          storage type. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  INFO    (output) INTEGER */
 
- /*          0  - successful exit */
 
- /*          <0 - if INFO = -i, the i-th argument had an illegal value. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (_starpu_lsame_(type__, "G")) {
 
- 	itype = 0;
 
-     } else if (_starpu_lsame_(type__, "L")) {
 
- 	itype = 1;
 
-     } else if (_starpu_lsame_(type__, "U")) {
 
- 	itype = 2;
 
-     } else if (_starpu_lsame_(type__, "H")) {
 
- 	itype = 3;
 
-     } else if (_starpu_lsame_(type__, "B")) {
 
- 	itype = 4;
 
-     } else if (_starpu_lsame_(type__, "Q")) {
 
- 	itype = 5;
 
-     } else if (_starpu_lsame_(type__, "Z")) {
 
- 	itype = 6;
 
-     } else {
 
- 	itype = -1;
 
-     }
 
-     if (itype == -1) {
 
- 	*info = -1;
 
-     } else if (*cfrom == 0. || _starpu_disnan_(cfrom)) {
 
- 	*info = -4;
 
-     } else if (_starpu_disnan_(cto)) {
 
- 	*info = -5;
 
-     } else if (*m < 0) {
 
- 	*info = -6;
 
-     } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
 
- 	*info = -7;
 
-     } else if (itype <= 3 && *lda < max(1,*m)) {
 
- 	*info = -9;
 
-     } else if (itype >= 4) {
 
- /* Computing MAX */
 
- 	i__1 = *m - 1;
 
- 	if (*kl < 0 || *kl > max(i__1,0)) {
 
- 	    *info = -2;
 
- 	} else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	    i__1 = *n - 1;
 
- 	    if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && 
 
- 		    *kl != *ku) {
 
- 		*info = -3;
 
- 	    } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
 
- 		    ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
 
- 		*info = -9;
 
- 	    }
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLASCL", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0 || *m == 0) {
 
- 	return 0;
 
-     }
 
- /*     Get machine parameters */
 
-     smlnum = _starpu_dlamch_("S");
 
-     bignum = 1. / smlnum;
 
-     cfromc = *cfrom;
 
-     ctoc = *cto;
 
- L10:
 
-     cfrom1 = cfromc * smlnum;
 
-     if (cfrom1 == cfromc) {
 
- /*        CFROMC is an inf.  Multiply by a correctly signed zero for */
 
- /*        finite CTOC, or a NaN if CTOC is infinite. */
 
- 	mul = ctoc / cfromc;
 
- 	done = TRUE_;
 
- 	cto1 = ctoc;
 
-     } else {
 
- 	cto1 = ctoc / bignum;
 
- 	if (cto1 == ctoc) {
 
- /*           CTOC is either 0 or an inf.  In both cases, CTOC itself */
 
- /*           serves as the correct multiplication factor. */
 
- 	    mul = ctoc;
 
- 	    done = TRUE_;
 
- 	    cfromc = 1.;
 
- 	} else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
 
- 	    mul = smlnum;
 
- 	    done = FALSE_;
 
- 	    cfromc = cfrom1;
 
- 	} else if (abs(cto1) > abs(cfromc)) {
 
- 	    mul = bignum;
 
- 	    done = FALSE_;
 
- 	    ctoc = cto1;
 
- 	} else {
 
- 	    mul = ctoc / cfromc;
 
- 	    done = TRUE_;
 
- 	}
 
-     }
 
-     if (itype == 0) {
 
- /*        Full matrix */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *m;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] *= mul;
 
- /* L20: */
 
- 	    }
 
- /* L30: */
 
- 	}
 
-     } else if (itype == 1) {
 
- /*        Lower triangular matrix */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *m;
 
- 	    for (i__ = j; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] *= mul;
 
- /* L40: */
 
- 	    }
 
- /* L50: */
 
- 	}
 
-     } else if (itype == 2) {
 
- /*        Upper triangular matrix */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = min(j,*m);
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] *= mul;
 
- /* L60: */
 
- 	    }
 
- /* L70: */
 
- 	}
 
-     } else if (itype == 3) {
 
- /*        Upper Hessenberg matrix */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 	    i__3 = j + 1;
 
- 	    i__2 = min(i__3,*m);
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] *= mul;
 
- /* L80: */
 
- 	    }
 
- /* L90: */
 
- 	}
 
-     } else if (itype == 4) {
 
- /*        Lower half of a symmetric band matrix */
 
- 	k3 = *kl + 1;
 
- 	k4 = *n + 1;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 	    i__3 = k3, i__4 = k4 - j;
 
- 	    i__2 = min(i__3,i__4);
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] *= mul;
 
- /* L100: */
 
- 	    }
 
- /* L110: */
 
- 	}
 
-     } else if (itype == 5) {
 
- /*        Upper half of a symmetric band matrix */
 
- 	k1 = *ku + 2;
 
- 	k3 = *ku + 1;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 	    i__2 = k1 - j;
 
- 	    i__3 = k3;
 
- 	    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
 
- 		a[i__ + j * a_dim1] *= mul;
 
- /* L120: */
 
- 	    }
 
- /* L130: */
 
- 	}
 
-     } else if (itype == 6) {
 
- /*        Band matrix */
 
- 	k1 = *kl + *ku + 2;
 
- 	k2 = *kl + 1;
 
- 	k3 = (*kl << 1) + *ku + 1;
 
- 	k4 = *kl + *ku + 1 + *m;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 	    i__3 = k1 - j;
 
- /* Computing MIN */
 
- 	    i__4 = k3, i__5 = k4 - j;
 
- 	    i__2 = min(i__4,i__5);
 
- 	    for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] *= mul;
 
- /* L140: */
 
- 	    }
 
- /* L150: */
 
- 	}
 
-     }
 
-     if (! done) {
 
- 	goto L10;
 
-     }
 
-     return 0;
 
- /*     End of DLASCL */
 
- } /* _starpu_dlascl_ */
 
 
  |