| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 | 
							- /* dlagtm.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlagtm_(char *trans, integer *n, integer *nrhs, 
 
- 	doublereal *alpha, doublereal *dl, doublereal *d__, doublereal *du, 
 
- 	doublereal *x, integer *ldx, doublereal *beta, doublereal *b, integer 
 
- 	*ldb)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     extern logical _starpu_lsame_(char *, char *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAGTM performs a matrix-vector product of the form */
 
- /*     B := alpha * A * X + beta * B */
 
- /*  where A is a tridiagonal matrix of order N, B and X are N by NRHS */
 
- /*  matrices, and alpha and beta are real scalars, each of which may be */
 
- /*  0., 1., or -1. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  TRANS   (input) CHARACTER*1 */
 
- /*          Specifies the operation applied to A. */
 
- /*          = 'N':  No transpose, B := alpha * A * X + beta * B */
 
- /*          = 'T':  Transpose,    B := alpha * A'* X + beta * B */
 
- /*          = 'C':  Conjugate transpose = Transpose */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices X and B. */
 
- /*  ALPHA   (input) DOUBLE PRECISION */
 
- /*          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise, */
 
- /*          it is assumed to be 0. */
 
- /*  DL      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) sub-diagonal elements of T. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The diagonal elements of T. */
 
- /*  DU      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) super-diagonal elements of T. */
 
- /*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          The N by NRHS matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(N,1). */
 
- /*  BETA    (input) DOUBLE PRECISION */
 
- /*          The scalar beta.  BETA must be 0., 1., or -1.; otherwise, */
 
- /*          it is assumed to be 1. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N by NRHS matrix B. */
 
- /*          On exit, B is overwritten by the matrix expression */
 
- /*          B := alpha * A * X + beta * B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(N,1). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --dl;
 
-     --d__;
 
-     --du;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Multiply B by BETA if BETA.NE.1. */
 
-     if (*beta == 0.) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *n;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		b[i__ + j * b_dim1] = 0.;
 
- /* L10: */
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     } else if (*beta == -1.) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *n;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		b[i__ + j * b_dim1] = -b[i__ + j * b_dim1];
 
- /* L30: */
 
- 	    }
 
- /* L40: */
 
- 	}
 
-     }
 
-     if (*alpha == 1.) {
 
- 	if (_starpu_lsame_(trans, "N")) {
 
- /*           Compute B := B + A*X */
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (*n == 1) {
 
- 		    b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
 
- 		} else {
 
- 		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j * 
 
- 			    x_dim1 + 1] + du[1] * x[j * x_dim1 + 2];
 
- 		    b[*n + j * b_dim1] = b[*n + j * b_dim1] + dl[*n - 1] * x[*
 
- 			    n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
 
- 			    ;
 
- 		    i__2 = *n - 1;
 
- 		    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + dl[i__ - 
 
- 				1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
 
- 				i__ + j * x_dim1] + du[i__] * x[i__ + 1 + j * 
 
- 				x_dim1];
 
- /* L50: */
 
- 		    }
 
- 		}
 
- /* L60: */
 
- 	    }
 
- 	} else {
 
- /*           Compute B := B + A'*X */
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (*n == 1) {
 
- 		    b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
 
- 		} else {
 
- 		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j * 
 
- 			    x_dim1 + 1] + dl[1] * x[j * x_dim1 + 2];
 
- 		    b[*n + j * b_dim1] = b[*n + j * b_dim1] + du[*n - 1] * x[*
 
- 			    n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
 
- 			    ;
 
- 		    i__2 = *n - 1;
 
- 		    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + du[i__ - 
 
- 				1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
 
- 				i__ + j * x_dim1] + dl[i__] * x[i__ + 1 + j * 
 
- 				x_dim1];
 
- /* L70: */
 
- 		    }
 
- 		}
 
- /* L80: */
 
- 	    }
 
- 	}
 
-     } else if (*alpha == -1.) {
 
- 	if (_starpu_lsame_(trans, "N")) {
 
- /*           Compute B := B - A*X */
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (*n == 1) {
 
- 		    b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
 
- 		} else {
 
- 		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j * 
 
- 			    x_dim1 + 1] - du[1] * x[j * x_dim1 + 2];
 
- 		    b[*n + j * b_dim1] = b[*n + j * b_dim1] - dl[*n - 1] * x[*
 
- 			    n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
 
- 			    ;
 
- 		    i__2 = *n - 1;
 
- 		    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - dl[i__ - 
 
- 				1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
 
- 				i__ + j * x_dim1] - du[i__] * x[i__ + 1 + j * 
 
- 				x_dim1];
 
- /* L90: */
 
- 		    }
 
- 		}
 
- /* L100: */
 
- 	    }
 
- 	} else {
 
- /*           Compute B := B - A'*X */
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (*n == 1) {
 
- 		    b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
 
- 		} else {
 
- 		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j * 
 
- 			    x_dim1 + 1] - dl[1] * x[j * x_dim1 + 2];
 
- 		    b[*n + j * b_dim1] = b[*n + j * b_dim1] - du[*n - 1] * x[*
 
- 			    n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
 
- 			    ;
 
- 		    i__2 = *n - 1;
 
- 		    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - du[i__ - 
 
- 				1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
 
- 				i__ + j * x_dim1] - dl[i__] * x[i__ + 1 + j * 
 
- 				x_dim1];
 
- /* L110: */
 
- 		    }
 
- 		}
 
- /* L120: */
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLAGTM */
 
- } /* _starpu_dlagtm_ */
 
 
  |