| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 | 
							- /* dlaed9.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dlaed9_(integer *k, integer *kstart, integer *kstop, 
 
- 	integer *n, doublereal *d__, doublereal *q, integer *ldq, doublereal *
 
- 	rho, doublereal *dlamda, doublereal *w, doublereal *s, integer *lds, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal temp;
 
-     extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlaed4_(integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAED9 finds the roots of the secular equation, as defined by the */
 
- /*  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the */
 
- /*  appropriate calls to DLAED4 and then stores the new matrix of */
 
- /*  eigenvectors for use in calculating the next level of Z vectors. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  K       (input) INTEGER */
 
- /*          The number of terms in the rational function to be solved by */
 
- /*          DLAED4.  K >= 0. */
 
- /*  KSTART  (input) INTEGER */
 
- /*  KSTOP   (input) INTEGER */
 
- /*          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP */
 
- /*          are to be computed.  1 <= KSTART <= KSTOP <= K. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of rows and columns in the Q matrix. */
 
- /*          N >= K (delation may result in N > K). */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          D(I) contains the updated eigenvalues */
 
- /*          for KSTART <= I <= KSTOP. */
 
- /*  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q.  LDQ >= max( 1, N ). */
 
- /*  RHO     (input) DOUBLE PRECISION */
 
- /*          The value of the parameter in the rank one update equation. */
 
- /*          RHO >= 0 required. */
 
- /*  DLAMDA  (input) DOUBLE PRECISION array, dimension (K) */
 
- /*          The first K elements of this array contain the old roots */
 
- /*          of the deflated updating problem.  These are the poles */
 
- /*          of the secular equation. */
 
- /*  W       (input) DOUBLE PRECISION array, dimension (K) */
 
- /*          The first K elements of this array contain the components */
 
- /*          of the deflation-adjusted updating vector. */
 
- /*  S       (output) DOUBLE PRECISION array, dimension (LDS, K) */
 
- /*          Will contain the eigenvectors of the repaired matrix which */
 
- /*          will be stored for subsequent Z vector calculation and */
 
- /*          multiplied by the previously accumulated eigenvectors */
 
- /*          to update the system. */
 
- /*  LDS     (input) INTEGER */
 
- /*          The leading dimension of S.  LDS >= max( 1, K ). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = 1, an eigenvalue did not converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --dlamda;
 
-     --w;
 
-     s_dim1 = *lds;
 
-     s_offset = 1 + s_dim1;
 
-     s -= s_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*k < 0) {
 
- 	*info = -1;
 
-     } else if (*kstart < 1 || *kstart > max(1,*k)) {
 
- 	*info = -2;
 
-     } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
 
- 	*info = -3;
 
-     } else if (*n < *k) {
 
- 	*info = -4;
 
-     } else if (*ldq < max(1,*k)) {
 
- 	*info = -7;
 
-     } else if (*lds < max(1,*k)) {
 
- 	*info = -12;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLAED9", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*k == 0) {
 
- 	return 0;
 
-     }
 
- /*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */
 
- /*     be computed with high relative accuracy (barring over/underflow). */
 
- /*     This is a problem on machines without a guard digit in */
 
- /*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
 
- /*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */
 
- /*     which on any of these machines zeros out the bottommost */
 
- /*     bit of DLAMDA(I) if it is 1; this makes the subsequent */
 
- /*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */
 
- /*     occurs. On binary machines with a guard digit (almost all */
 
- /*     machines) it does not change DLAMDA(I) at all. On hexadecimal */
 
- /*     and decimal machines with a guard digit, it slightly */
 
- /*     changes the bottommost bits of DLAMDA(I). It does not account */
 
- /*     for hexadecimal or decimal machines without guard digits */
 
- /*     (we know of none). We use a subroutine call to compute */
 
- /*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
 
- /*     this code. */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	dlamda[i__] = _starpu_dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
 
- /* L10: */
 
-     }
 
-     i__1 = *kstop;
 
-     for (j = *kstart; j <= i__1; ++j) {
 
- 	_starpu_dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 
 
- 		info);
 
- /*        If the zero finder fails, the computation is terminated. */
 
- 	if (*info != 0) {
 
- 	    goto L120;
 
- 	}
 
- /* L20: */
 
-     }
 
-     if (*k == 1 || *k == 2) {
 
- 	i__1 = *k;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    i__2 = *k;
 
- 	    for (j = 1; j <= i__2; ++j) {
 
- 		s[j + i__ * s_dim1] = q[j + i__ * q_dim1];
 
- /* L30: */
 
- 	    }
 
- /* L40: */
 
- 	}
 
- 	goto L120;
 
-     }
 
- /*     Compute updated W. */
 
-     _starpu_dcopy_(k, &w[1], &c__1, &s[s_offset], &c__1);
 
- /*     Initialize W(I) = Q(I,I) */
 
-     i__1 = *ldq + 1;
 
-     _starpu_dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
 
-     i__1 = *k;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = j - 1;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
 
- /* L50: */
 
- 	}
 
- 	i__2 = *k;
 
- 	for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
 
- /* L60: */
 
- 	}
 
- /* L70: */
 
-     }
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	d__1 = sqrt(-w[i__]);
 
- 	w[i__] = d_sign(&d__1, &s[i__ + s_dim1]);
 
- /* L80: */
 
-     }
 
- /*     Compute eigenvectors of the modified rank-1 modification. */
 
-     i__1 = *k;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = *k;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1];
 
- /* L90: */
 
- 	}
 
- 	temp = _starpu_dnrm2_(k, &q[j * q_dim1 + 1], &c__1);
 
- 	i__2 = *k;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp;
 
- /* L100: */
 
- 	}
 
- /* L110: */
 
-     }
 
- L120:
 
-     return 0;
 
- /*     End of DLAED9 */
 
- } /* _starpu_dlaed9_ */
 
 
  |