| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441 | 
							- /* dlaed0.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__9 = 9;
 
- static integer c__0 = 0;
 
- static integer c__2 = 2;
 
- static doublereal c_b23 = 1.;
 
- static doublereal c_b24 = 0.;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dlaed0_(integer *icompq, integer *qsiz, integer *n, 
 
- 	doublereal *d__, doublereal *e, doublereal *q, integer *ldq, 
 
- 	doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double log(doublereal);
 
-     integer pow_ii(integer *, integer *);
 
-     /* Local variables */
 
-     integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
 
-     doublereal temp;
 
-     integer curr;
 
-     extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     integer iperm;
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer indxq, iwrem;
 
-     extern /* Subroutine */ int _starpu_dlaed1_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, integer *);
 
-     integer iqptr;
 
-     extern /* Subroutine */ int _starpu_dlaed7_(integer *, integer *, integer *, 
 
- 	    integer *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *, integer *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *);
 
-     integer tlvls;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     integer igivcl;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer igivnm, submat, curprb, subpbs, igivpt;
 
-     extern /* Subroutine */ int _starpu_dsteqr_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *);
 
-     integer curlvl, matsiz, iprmpt, smlsiz;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAED0 computes all eigenvalues and corresponding eigenvectors of a */
 
- /*  symmetric tridiagonal matrix using the divide and conquer method. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ICOMPQ  (input) INTEGER */
 
- /*          = 0:  Compute eigenvalues only. */
 
- /*          = 1:  Compute eigenvectors of original dense symmetric matrix */
 
- /*                also.  On entry, Q contains the orthogonal matrix used */
 
- /*                to reduce the original matrix to tridiagonal form. */
 
- /*          = 2:  Compute eigenvalues and eigenvectors of tridiagonal */
 
- /*                matrix. */
 
- /*  QSIZ   (input) INTEGER */
 
- /*         The dimension of the orthogonal matrix used to reduce */
 
- /*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */
 
- /*  N      (input) INTEGER */
 
- /*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 
- /*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*         On entry, the main diagonal of the tridiagonal matrix. */
 
- /*         On exit, its eigenvalues. */
 
- /*  E      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*         The off-diagonal elements of the tridiagonal matrix. */
 
- /*         On exit, E has been destroyed. */
 
- /*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
 
- /*         On entry, Q must contain an N-by-N orthogonal matrix. */
 
- /*         If ICOMPQ = 0    Q is not referenced. */
 
- /*         If ICOMPQ = 1    On entry, Q is a subset of the columns of the */
 
- /*                          orthogonal matrix used to reduce the full */
 
- /*                          matrix to tridiagonal form corresponding to */
 
- /*                          the subset of the full matrix which is being */
 
- /*                          decomposed at this time. */
 
- /*         If ICOMPQ = 2    On entry, Q will be the identity matrix. */
 
- /*                          On exit, Q contains the eigenvectors of the */
 
- /*                          tridiagonal matrix. */
 
- /*  LDQ    (input) INTEGER */
 
- /*         The leading dimension of the array Q.  If eigenvectors are */
 
- /*         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1. */
 
- /*  QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N) */
 
- /*         Referenced only when ICOMPQ = 1.  Used to store parts of */
 
- /*         the eigenvector matrix when the updating matrix multiplies */
 
- /*         take place. */
 
- /*  LDQS   (input) INTEGER */
 
- /*         The leading dimension of the array QSTORE.  If ICOMPQ = 1, */
 
- /*         then  LDQS >= max(1,N).  In any case,  LDQS >= 1. */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, */
 
- /*         If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
 
- /*                     1 + 3*N + 2*N*lg N + 2*N**2 */
 
- /*                     ( lg( N ) = smallest integer k */
 
- /*                                 such that 2^k >= N ) */
 
- /*         If ICOMPQ = 2, the dimension of WORK must be at least */
 
- /*                     4*N + N**2. */
 
- /*  IWORK  (workspace) INTEGER array, */
 
- /*         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
 
- /*                        6 + 6*N + 5*N*lg N. */
 
- /*                        ( lg( N ) = smallest integer k */
 
- /*                                    such that 2^k >= N ) */
 
- /*         If ICOMPQ = 2, the dimension of IWORK must be at least */
 
- /*                        3 + 5*N. */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  The algorithm failed to compute an eigenvalue while */
 
- /*                working on the submatrix lying in rows and columns */
 
- /*                INFO/(N+1) through mod(INFO,N+1). */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     qstore_dim1 = *ldqs;
 
-     qstore_offset = 1 + qstore_dim1;
 
-     qstore -= qstore_offset;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*icompq < 0 || *icompq > 2) {
 
- 	*info = -1;
 
-     } else if (*icompq == 1 && *qsiz < max(0,*n)) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*ldq < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldqs < max(1,*n)) {
 
- 	*info = -9;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLAED0", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     smlsiz = _starpu_ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0);
 
- /*     Determine the size and placement of the submatrices, and save in */
 
- /*     the leading elements of IWORK. */
 
-     iwork[1] = *n;
 
-     subpbs = 1;
 
-     tlvls = 0;
 
- L10:
 
-     if (iwork[subpbs] > smlsiz) {
 
- 	for (j = subpbs; j >= 1; --j) {
 
- 	    iwork[j * 2] = (iwork[j] + 1) / 2;
 
- 	    iwork[(j << 1) - 1] = iwork[j] / 2;
 
- /* L20: */
 
- 	}
 
- 	++tlvls;
 
- 	subpbs <<= 1;
 
- 	goto L10;
 
-     }
 
-     i__1 = subpbs;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	iwork[j] += iwork[j - 1];
 
- /* L30: */
 
-     }
 
- /*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
 
- /*     using rank-1 modifications (cuts). */
 
-     spm1 = subpbs - 1;
 
-     i__1 = spm1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	submat = iwork[i__] + 1;
 
- 	smm1 = submat - 1;
 
- 	d__[smm1] -= (d__1 = e[smm1], abs(d__1));
 
- 	d__[submat] -= (d__1 = e[smm1], abs(d__1));
 
- /* L40: */
 
-     }
 
-     indxq = (*n << 2) + 3;
 
-     if (*icompq != 2) {
 
- /*        Set up workspaces for eigenvalues only/accumulate new vectors */
 
- /*        routine */
 
- 	temp = log((doublereal) (*n)) / log(2.);
 
- 	lgn = (integer) temp;
 
- 	if (pow_ii(&c__2, &lgn) < *n) {
 
- 	    ++lgn;
 
- 	}
 
- 	if (pow_ii(&c__2, &lgn) < *n) {
 
- 	    ++lgn;
 
- 	}
 
- 	iprmpt = indxq + *n + 1;
 
- 	iperm = iprmpt + *n * lgn;
 
- 	iqptr = iperm + *n * lgn;
 
- 	igivpt = iqptr + *n + 2;
 
- 	igivcl = igivpt + *n * lgn;
 
- 	igivnm = 1;
 
- 	iq = igivnm + (*n << 1) * lgn;
 
- /* Computing 2nd power */
 
- 	i__1 = *n;
 
- 	iwrem = iq + i__1 * i__1 + 1;
 
- /*        Initialize pointers */
 
- 	i__1 = subpbs;
 
- 	for (i__ = 0; i__ <= i__1; ++i__) {
 
- 	    iwork[iprmpt + i__] = 1;
 
- 	    iwork[igivpt + i__] = 1;
 
- /* L50: */
 
- 	}
 
- 	iwork[iqptr] = 1;
 
-     }
 
- /*     Solve each submatrix eigenproblem at the bottom of the divide and */
 
- /*     conquer tree. */
 
-     curr = 0;
 
-     i__1 = spm1;
 
-     for (i__ = 0; i__ <= i__1; ++i__) {
 
- 	if (i__ == 0) {
 
- 	    submat = 1;
 
- 	    matsiz = iwork[1];
 
- 	} else {
 
- 	    submat = iwork[i__] + 1;
 
- 	    matsiz = iwork[i__ + 1] - iwork[i__];
 
- 	}
 
- 	if (*icompq == 2) {
 
- 	    _starpu_dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat + 
 
- 		    submat * q_dim1], ldq, &work[1], info);
 
- 	    if (*info != 0) {
 
- 		goto L130;
 
- 	    }
 
- 	} else {
 
- 	    _starpu_dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + 
 
- 		    iwork[iqptr + curr]], &matsiz, &work[1], info);
 
- 	    if (*info != 0) {
 
- 		goto L130;
 
- 	    }
 
- 	    if (*icompq == 1) {
 
- 		_starpu_dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat * 
 
- 			q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]], 
 
- 			 &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1], 
 
- 			ldqs);
 
- 	    }
 
- /* Computing 2nd power */
 
- 	    i__2 = matsiz;
 
- 	    iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
 
- 	    ++curr;
 
- 	}
 
- 	k = 1;
 
- 	i__2 = iwork[i__ + 1];
 
- 	for (j = submat; j <= i__2; ++j) {
 
- 	    iwork[indxq + j] = k;
 
- 	    ++k;
 
- /* L60: */
 
- 	}
 
- /* L70: */
 
-     }
 
- /*     Successively merge eigensystems of adjacent submatrices */
 
- /*     into eigensystem for the corresponding larger matrix. */
 
- /*     while ( SUBPBS > 1 ) */
 
-     curlvl = 1;
 
- L80:
 
-     if (subpbs > 1) {
 
- 	spm2 = subpbs - 2;
 
- 	i__1 = spm2;
 
- 	for (i__ = 0; i__ <= i__1; i__ += 2) {
 
- 	    if (i__ == 0) {
 
- 		submat = 1;
 
- 		matsiz = iwork[2];
 
- 		msd2 = iwork[1];
 
- 		curprb = 0;
 
- 	    } else {
 
- 		submat = iwork[i__] + 1;
 
- 		matsiz = iwork[i__ + 2] - iwork[i__];
 
- 		msd2 = matsiz / 2;
 
- 		++curprb;
 
- 	    }
 
- /*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
 
- /*     into an eigensystem of size MATSIZ. */
 
- /*     DLAED1 is used only for the full eigensystem of a tridiagonal */
 
- /*     matrix. */
 
- /*     DLAED7 handles the cases in which eigenvalues only or eigenvalues */
 
- /*     and eigenvectors of a full symmetric matrix (which was reduced to */
 
- /*     tridiagonal form) are desired. */
 
- 	    if (*icompq == 2) {
 
- 		_starpu_dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1], 
 
- 			ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
 
- 			msd2, &work[1], &iwork[subpbs + 1], info);
 
- 	    } else {
 
- 		_starpu_dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
 
- 			submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
 
- 			iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
 
- 			work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
 
- , &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
 
- 			work[iwrem], &iwork[subpbs + 1], info);
 
- 	    }
 
- 	    if (*info != 0) {
 
- 		goto L130;
 
- 	    }
 
- 	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
 
- /* L90: */
 
- 	}
 
- 	subpbs /= 2;
 
- 	++curlvl;
 
- 	goto L80;
 
-     }
 
- /*     end while */
 
- /*     Re-merge the eigenvalues/vectors which were deflated at the final */
 
- /*     merge step. */
 
-     if (*icompq == 1) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    j = iwork[indxq + i__];
 
- 	    work[i__] = d__[j];
 
- 	    _starpu_dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 
 
- 		    + 1], &c__1);
 
- /* L100: */
 
- 	}
 
- 	_starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
 
-     } else if (*icompq == 2) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    j = iwork[indxq + i__];
 
- 	    work[i__] = d__[j];
 
- 	    _starpu_dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
 
- /* L110: */
 
- 	}
 
- 	_starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
 
- 	_starpu_dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
 
-     } else {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    j = iwork[indxq + i__];
 
- 	    work[i__] = d__[j];
 
- /* L120: */
 
- 	}
 
- 	_starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
 
-     }
 
-     goto L140;
 
- L130:
 
-     *info = submat * (*n + 1) + submat + matsiz - 1;
 
- L140:
 
-     return 0;
 
- /*     End of DLAED0 */
 
- } /* _starpu_dlaed0_ */
 
 
  |