| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435 | 
							- /* dlabrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b4 = -1.;
 
- static doublereal c_b5 = 1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b16 = 0.;
 
- /* Subroutine */ int _starpu_dlabrd_(integer *m, integer *n, integer *nb, doublereal *
 
- 	a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq, 
 
- 	doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer 
 
- 	*ldy)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, 
 
- 	    i__3;
 
-     /* Local variables */
 
-     integer i__;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *), _starpu_dgemv_(char *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *), _starpu_dlarfg_(integer *, doublereal *, 
 
- 	     doublereal *, integer *, doublereal *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLABRD reduces the first NB rows and columns of a real general */
 
- /*  m by n matrix A to upper or lower bidiagonal form by an orthogonal */
 
- /*  transformation Q' * A * P, and returns the matrices X and Y which */
 
- /*  are needed to apply the transformation to the unreduced part of A. */
 
- /*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
 
- /*  bidiagonal form. */
 
- /*  This is an auxiliary routine called by DGEBRD */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows in the matrix A. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns in the matrix A. */
 
- /*  NB      (input) INTEGER */
 
- /*          The number of leading rows and columns of A to be reduced. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the m by n general matrix to be reduced. */
 
- /*          On exit, the first NB rows and columns of the matrix are */
 
- /*          overwritten; the rest of the array is unchanged. */
 
- /*          If m >= n, elements on and below the diagonal in the first NB */
 
- /*            columns, with the array TAUQ, represent the orthogonal */
 
- /*            matrix Q as a product of elementary reflectors; and */
 
- /*            elements above the diagonal in the first NB rows, with the */
 
- /*            array TAUP, represent the orthogonal matrix P as a product */
 
- /*            of elementary reflectors. */
 
- /*          If m < n, elements below the diagonal in the first NB */
 
- /*            columns, with the array TAUQ, represent the orthogonal */
 
- /*            matrix Q as a product of elementary reflectors, and */
 
- /*            elements on and above the diagonal in the first NB rows, */
 
- /*            with the array TAUP, represent the orthogonal matrix P as */
 
- /*            a product of elementary reflectors. */
 
- /*          See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (NB) */
 
- /*          The diagonal elements of the first NB rows and columns of */
 
- /*          the reduced matrix.  D(i) = A(i,i). */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (NB) */
 
- /*          The off-diagonal elements of the first NB rows and columns of */
 
- /*          the reduced matrix. */
 
- /*  TAUQ    (output) DOUBLE PRECISION array dimension (NB) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix Q. See Further Details. */
 
- /*  TAUP    (output) DOUBLE PRECISION array, dimension (NB) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix P. See Further Details. */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NB) */
 
- /*          The m-by-nb matrix X required to update the unreduced part */
 
- /*          of A. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X. LDX >= M. */
 
- /*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB) */
 
- /*          The n-by-nb matrix Y required to update the unreduced part */
 
- /*          of A. */
 
- /*  LDY     (input) INTEGER */
 
- /*          The leading dimension of the array Y. LDY >= N. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrices Q and P are represented as products of elementary */
 
- /*  reflectors: */
 
- /*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb) */
 
- /*  Each H(i) and G(i) has the form: */
 
- /*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */
 
- /*  where tauq and taup are real scalars, and v and u are real vectors. */
 
- /*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
 
- /*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
 
- /*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
 
- /*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
 
- /*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
 
- /*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
 
- /*  The elements of the vectors v and u together form the m-by-nb matrix */
 
- /*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply */
 
- /*  the transformation to the unreduced part of the matrix, using a block */
 
- /*  update of the form:  A := A - V*Y' - X*U'. */
 
- /*  The contents of A on exit are illustrated by the following examples */
 
- /*  with nb = 2: */
 
- /*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */
 
- /*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 ) */
 
- /*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 ) */
 
- /*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  ) */
 
- /*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
 
- /*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
 
- /*    (  v1  v2  a   a   a  ) */
 
- /*  where a denotes an element of the original matrix which is unchanged, */
 
- /*  vi denotes an element of the vector defining H(i), and ui an element */
 
- /*  of the vector defining G(i). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Quick return if possible */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --d__;
 
-     --e;
 
-     --tauq;
 
-     --taup;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     y_dim1 = *ldy;
 
-     y_offset = 1 + y_dim1;
 
-     y -= y_offset;
 
-     /* Function Body */
 
-     if (*m <= 0 || *n <= 0) {
 
- 	return 0;
 
-     }
 
-     if (*m >= *n) {
 
- /*        Reduce to upper bidiagonal form */
 
- 	i__1 = *nb;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*           Update A(i:m,i) */
 
- 	    i__2 = *m - i__ + 1;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda, 
 
- 		     &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], &
 
- 		    c__1);
 
- 	    i__2 = *m - i__ + 1;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx, 
 
- 		     &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ * 
 
- 		    a_dim1], &c__1);
 
- /*           Generate reflection Q(i) to annihilate A(i+1:m,i) */
 
- 	    i__2 = *m - i__ + 1;
 
- /* Computing MIN */
 
- 	    i__3 = i__ + 1;
 
- 	    _starpu_dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * 
 
- 		    a_dim1], &c__1, &tauq[i__]);
 
- 	    d__[i__] = a[i__ + i__ * a_dim1];
 
- 	    if (i__ < *n) {
 
- 		a[i__ + i__ * a_dim1] = 1.;
 
- /*              Compute Y(i+1:n,i) */
 
- 		i__2 = *m - i__ + 1;
 
- 		i__3 = *n - i__;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) * 
 
- 			a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &
 
- 			y[i__ + 1 + i__ * y_dim1], &c__1);
 
- 		i__2 = *m - i__ + 1;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], 
 
- 			lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * 
 
- 			y_dim1 + 1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + 
 
- 			y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
 
- 			i__ + 1 + i__ * y_dim1], &c__1);
 
- 		i__2 = *m - i__ + 1;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1], 
 
- 			ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * 
 
- 			y_dim1 + 1], &c__1);
 
- 		i__2 = i__ - 1;
 
- 		i__3 = *n - i__;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * 
 
- 			a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, 
 
- 			&y[i__ + 1 + i__ * y_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
 
- /*              Update A(i,i+1:n) */
 
- 		i__2 = *n - i__;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 + 
 
- 			y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + (
 
- 			i__ + 1) * a_dim1], lda);
 
- 		i__2 = i__ - 1;
 
- 		i__3 = *n - i__;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * 
 
- 			a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[
 
- 			i__ + (i__ + 1) * a_dim1], lda);
 
- /*              Generate reflection P(i) to annihilate A(i,i+2:n) */
 
- 		i__2 = *n - i__;
 
- /* Computing MIN */
 
- 		i__3 = i__ + 2;
 
- 		_starpu_dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
 
- 			i__3, *n)* a_dim1], lda, &taup[i__]);
 
- 		e[i__] = a[i__ + (i__ + 1) * a_dim1];
 
- 		a[i__ + (i__ + 1) * a_dim1] = 1.;
 
- /*              Compute X(i+1:m,i) */
 
- 		i__2 = *m - i__;
 
- 		i__3 = *n - i__;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ 
 
- 			+ 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], 
 
- 			lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1], 
 
- 			ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[
 
- 			i__ * x_dim1 + 1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 + 
 
- 			a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
 
- 			i__ + 1 + i__ * x_dim1], &c__1);
 
- 		i__2 = i__ - 1;
 
- 		i__3 = *n - i__;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * 
 
- 			a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
 
- 			c_b16, &x[i__ * x_dim1 + 1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + 
 
- 			x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
 
- 			i__ + 1 + i__ * x_dim1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		_starpu_dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
 
- 	    }
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /*        Reduce to lower bidiagonal form */
 
- 	i__1 = *nb;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*           Update A(i,i:n) */
 
- 	    i__2 = *n - i__ + 1;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy, 
 
- 		     &a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1], 
 
- 		    lda);
 
- 	    i__2 = i__ - 1;
 
- 	    i__3 = *n - i__ + 1;
 
- 	    _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1], 
 
- 		    lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1], 
 
- 		     lda);
 
- /*           Generate reflection P(i) to annihilate A(i,i+1:n) */
 
- 	    i__2 = *n - i__ + 1;
 
- /* Computing MIN */
 
- 	    i__3 = i__ + 1;
 
- 	    _starpu_dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* 
 
- 		    a_dim1], lda, &taup[i__]);
 
- 	    d__[i__] = a[i__ + i__ * a_dim1];
 
- 	    if (i__ < *m) {
 
- 		a[i__ + i__ * a_dim1] = 1.;
 
- /*              Compute X(i+1:m,i) */
 
- 		i__2 = *m - i__;
 
- 		i__3 = *n - i__ + 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ *
 
- 			 a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &
 
- 			x[i__ + 1 + i__ * x_dim1], &c__1);
 
- 		i__2 = *n - i__ + 1;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1], 
 
- 			ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * 
 
- 			x_dim1 + 1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + 
 
- 			a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
 
- 			i__ + 1 + i__ * x_dim1], &c__1);
 
- 		i__2 = i__ - 1;
 
- 		i__3 = *n - i__ + 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 + 
 
- 			1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
 
- 			 x_dim1 + 1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + 
 
- 			x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
 
- 			i__ + 1 + i__ * x_dim1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		_starpu_dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
 
- /*              Update A(i+1:m,i) */
 
- 		i__2 = *m - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + 
 
- 			a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + 
 
- 			1 + i__ * a_dim1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 + 
 
- 			x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[
 
- 			i__ + 1 + i__ * a_dim1], &c__1);
 
- /*              Generate reflection Q(i) to annihilate A(i+2:m,i) */
 
- 		i__2 = *m - i__;
 
- /* Computing MIN */
 
- 		i__3 = i__ + 2;
 
- 		_starpu_dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+ 
 
- 			i__ * a_dim1], &c__1, &tauq[i__]);
 
- 		e[i__] = a[i__ + 1 + i__ * a_dim1];
 
- 		a[i__ + 1 + i__ * a_dim1] = 1.;
 
- /*              Compute Y(i+1:n,i) */
 
- 		i__2 = *m - i__;
 
- 		i__3 = *n - i__;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ + 
 
- 			1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, 
 
- 			&c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], 
 
- 			 lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
 
- 			i__ * y_dim1 + 1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + 
 
- 			y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
 
- 			i__ + 1 + i__ * y_dim1], &c__1);
 
- 		i__2 = *m - i__;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1], 
 
- 			ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
 
- 			i__ * y_dim1 + 1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_dgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1 
 
- 			+ 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__ 
 
- 			+ 1 + i__ * y_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLABRD */
 
- } /* _starpu_dlabrd_ */
 
 
  |